• 1
    Pate JL: Cellular components involved in luteolysis. J Anim Sci 1994; 72:18841890.
  • 2
    Pate JL: Involvement of immune cells in regulation of ovarian function. J Reprod Fert Suppl 1995; 49:365377.
  • 3
    Pate JL, Townson DT: Novel local regulators in luteal regression. J Anim Sci 1994;72:3142.
  • 4
    Pate JL, Keyes PK: Immune cells in the corpus luteum: friends or foes? Reproduction 2001;122:665676.
  • 5
    Webb R, Woad KJ, Armstrong DG: Corpus luteum (CL) function: local control mechanisms. Domest Anim Endocrinol 2002; 23:277285.
  • 6
    Townson DH, Liptak AR: Chemokines in the corpus luteum: implications of leukocyte chemotaxis. Reprod Biol Endocrinol 2003; 1:94.
  • 7
    Bukovsky A, Caudle MR: Immune physiology of the mammalian ovary – a review. Am J Reprod Immunol 2008; 59:1226.
  • 8
    Bukovsky A, Presl J: Ovarian function and the immune system. Med Hypotheses 1979; 5:415436.
  • 9
    Espey LL: Ovulation as an inflammatory reaction – a hypothesis. Biol Reprod 1980; 22:73106.
  • 10
    Wong KHH, Negishi H, Adashi EY: Expression, hormonal regulation, and cyclic variation of chemokines in the rat ovary: key determinants of the intraovarian residence of representatives of the white blood cell series. Endocrinology 2002; 143:784791.
  • 11
    Skinner MK, Schmidt M, Savenkova ML, Sadler-Riggleman I, Nilsson EE: Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development. Mol Reprod Dev 2008; 75:14571472.
  • 12
    Liu Z, Youngquist RS, Garverick HA, Antoniou E: Molecular mechanisms regulating bovine ovarian follicular selection. Mol Reprod Dev 2009; 76:351366.
  • 13
    Wang H, Wen Y, Polan ML, Boostanfar R, Feinman M, Behr B: Exogenous granulocyte-macrophage colony-stimulating factor promotes follicular development in the newborn rat in vivo. Hum Reprod 2005; 20:27492756.
  • 14
    Dahm-Kähler P, Ghahremani M, Lind AK, Sundfeldt K, Brännström M: Monocyte chemotactic protein-1 (MCP-1), its receptor, and macrophages in the perifollicular stroma during the human ovulatory process. Fertil Steril 2009; 91:231239.
  • 15
    Zhou C, Wu J, Borillo J, Torres L, McMahon J, Bao Y, Lou YH: Transient expression of cc chemokine TECK in the ovary during ovulation: its potential role in ovulation. Am J Reprod Immunol 2005; 53:238248.
  • 16
    Ujioka T, Matsukawa A, Tanaka N, Matsuura K, Yoshinaga M, Okamura H: Interleukin-8 as an essential factor in the human chorionic gonadotropin-induced rabbit ovulatory process: Interleukin-8 induces neutrophil accumulation and activation in ovulation. Biol Reprod 1998; 58:526530.
  • 17
    Zhao P, De A, Hu Z, Li J, Mulders SM, Gelpke MDS, Duan EK, Hsueh AJW: Gonadotropin stimulation of ovarian fractalkine expression and fractalkine augmentation of progesterone biosynthesis by luteinizing granulosa cells. Endocrinology 2008; 149:27822789.
  • 18
    Salmassi A, Zhang Z, Schmutzler AG, Koch K, Buck S, Jonat W, Mettler L: Expression of mRNA and protein of macrophage colony-stimulating factor and its receptor in human follicular luteinized granulosa cells. Fertil Steril 2005; 83:419425.
  • 19
    Zhang Z, Fang Q, Wang J: Involvement of macrophage colony-stimulating factor (M-CSF) in the function of follicular granulosa cells. Fertil Steril 2008; 90:749754.
  • 20
    Kryczek I, Frydman N, Gaudin F, Krzysiek R, Frachin R, Emilie D, Chouaib S, Zou W, Machelon V: The chemokine SDF-1/CXCL12 contributes to T lymphocyte recruitment in human pre-ovulatory follicles and coordinates with lymphocytes to increase granulosa cell survival and embryo quality. Am J Reprod Immunol 2005; 54:270283.
  • 21
    Xu H, Schultze-Mosgau A, Agic A, Diedrich K, Taylor RN, Hornung D: Regulated upon activation, normal T cell expressed and secreted (RANTES) and monocyte chemotactic protein 1 in follicular fluid accumulate differentially in patients with and without endometriosis undergoing in vitro fertilization. Fertil Steril 2006; 86:16161620.
  • 22
    Das S, Bates MD, Vince GS, Lewis-Jones I, Gazvani R: Follicular fluid expression of alpha-defensins and their role in ovulation. J Assist Reprod Genet 2008; 25:8387.
  • 23
    Křížan J, Cuchalová L, Šíma P, Králíčková M, Madar J, Větvička V: Altered distribution of NK and NKT cells in follicular fluid is associated with IVF outcome. J Reprod Immunol 2009; 82:8488.
  • 24
    Hojo T, Al-Ztabi MO, Komiyama J, Manabe N, Acosta TJ, Okuda K: Expression and localization of cFLIP, an anti-apoptotic factor, in the bovine corpus luteum. J Reprod Dev 2009; [Epub ahead of print].
  • 25
    Jasper MJ, Robertson SA, Van der Hoek KH, Bonello N, Brännström M, Norman RJ: Characterization of ovarian function in granulocyte-macrophage colony-stimulating factor-deficient mice. Biol Reprod 2000; 62:704713.
  • 26
    Murdoch WJ, Steadman LE: Investigation concerning the relationship of ovarian eosinophilia to ovulation and luteal function in the sheep. Am J Reprod Immunol 1991; 25:8187.
  • 27
    Aust G, Simchen C, Heider U, Hmeidan FA, Blumenauer V, Spanel-Borowski K: Eosinophils in the human corpus luteum: the role of RANTES and eotaxin in eosinophil attraction into periovulatory structures. Mol Hum Reprod 2000; 6:10851091.
  • 28
    Reibiger I, Aust G, Tscheudschilsuren G, Beyer R, Gebhardt C, Spanel-Borowski K: The expression of substance P and its neurokinin-1 receptor mRNA in the bovine corpus luteum of early developmental stage. Neurosci Lett 2001; 299:4952.
  • 29
    Vogel B, Klinder A, Sittig D, Aust G: Bovine eotaxin (CCL11) – an unusual member of the eotaxin group – attracts eosinophils in vitro but is not responsible for eosinophilia in the ovary. Vet Immunol Immunopathol 2005; 107:6777.
  • 30
    Penny LA, Armstrong D, Bramley TA, Webb R, Collins RA, Watson ED: Immune cells and cytokine production in the bovine corpus luteum throughout the oestrous cycle and after induced luteolysis. J Reprod Fertil 1999; 115:8796.
  • 31
    Reibiger I, Spanel-Borowski K: Difference in localization of eosinophils and mast cells in the bovine ovary. J Reprod Fertil 2000; 118:243249.
  • 32
    Rohm F, Spanel-Borowski K, Eichler W, Aust G: Correlation between expression of selectins and migration of eosinophils into the bovine ovary during the periovulatory period. Cell Tissue Res 2002; 309:313322.
  • 33
    Bauer M, Reibiger I, Spanel-Borowski K: Leucocyte proliferation in the bovine corpus luteum. Reproduction 2001; 121:297305.
  • 34
    Townson DH, O’Connor CL, Pru JK: Expression of monocyte chemoattractant protein-1 and distribution of immune cell populations in the bovine corpus luteum throughout the estrous cycle. Biol Reprod 2002; 66:361366.
  • 35
    Davis TL, Pate JL: Proliferation of major histocompatibility nonrestricted gamma delta T cells is stimulated by bovine luteal cells. Biol Reprod 2007; 77:914922.
  • 36
    Poole DH, Pate JL: Loss of regulatory T lymphocytes in the regressing corpus luteum. Biol Reprod 2009; 81:abstract no. 87.
  • 37
    Lawler DF, Hopkins J, Watson ED: Immune cell populations in the equine corpus luteum throughout the oestrous cycle and early pregnancy: an immunohistochemical and flow cytometric study. J Reprod Fertil 1999; 117:281290.
  • 38
    Murdoch WJ: Treatment of sheep with prostaglandin F2 alpha enhances production of a luteal chemoattractant for eosinophils. Am J Reprod Immunol Microbiol 1987; 15:5256.
  • 39
    Cavender JL, Murdoch WJ: Morphological studies of the microcirculatory system of periovulatory ovine follicles. Biol Reprod 1988; 39:989997.
  • 40
    Standaert FE, Zamora CS, Chew BP: Quantitative and qualitative changes in blood leukocytes in the porcine ovary. Am J Reprod Immunol 1991; 25:163168.
  • 41
    Hehnke KE, Christenson LK, Ford SP, Taylor M: Macrophage infiltration into the porcine corpus luteum during prostaglandin F2α-induced luteolysis. Biol Reprod 1994; 50:1015.
  • 42
    Kim WS, Han SR, Son SK, Park CS, Yang YS: A morphological study on the macrophages during luteolysis in the pig. J Anim Sci Technol 2006; 48:191202.
  • 43
    Komatsu K, Manabe N, Kiso M, Shimabe M, Miyamoto H: Changes in localization of immune cells and cytokines in corpora lutea during luteolysis in murine ovaries. J Exp Zool 2003; 296A:152159.
  • 44
    Sander VA, Piehl L, Facorro GB, Rubin de Celis R, Motta AB: Regulation of functional and regressing stages of corpus luteum development in mice. Role of reactive oxygen species. Reprod Fertil Dev 2008; 20:760769.
  • 45
    Brännström M, Giesecke L, Moore IC, Van Den Heuvel CJ, Robertson SA: Leukocyte subpopulations in the rat corpus luteum during pregnancy and pseudopregnancy. Biol Reprod 1994; 50:11611167.
  • 46
    Bagavandoss P, Kunkel SL, Wiggins RC, Keyes PL: Tumor necrosis factor-α (TNF-α) production and localization of macrophages and T lymphocytes in the rabbit corpus luteum. Endocrinology 1988; 122:11851187.
  • 47
    Bagavandoss P, Wiggins RC, Kunkel SL, Remick DG, Keyes PL: Tumor necrosis factor production and accumulation of inflammatory cells in the corpus luteum of pseudopregnancy and pregnancy in rabbits. Biol Reprod 1990; 42:367376.
  • 48
    Krusche CA, Vloet TD: Functional and structural regression of the rabbit corpus luteum is associated with altered luteal immune cell phenotypes and cytokine expression patterns. Histochem Cell Biol 2002; 118:479489.
  • 49
    Naftalin DM, Bove SE, Keyes PL, Townson DH: Estrogen withdrawal induces macrophage invasion in the rabbit corpus luteum. Biol Reprod 1997; 56:11751180.
  • 50
    Itoh M, Yano A, Li X, Miyamoto K, Takeuchi Y: Limited uptake of foreign materials by resident macrophages in murine ovarian tissues. J Reprod Immunol 1999; 43:5566.
  • 51
    Hameed A, Fox W, Kurman RJ, Hruban RH, Podack ER: Perforin expression in human cell-mediated luteolysis. Int J Gynecol Pathol 1995; 14:151157.
  • 52
    Best CL, Pudney J, Welch W, Burger N, Hill JA: Localization and characterization of white blood cell populations within the human ovary throughout the menstrual cycle and menopause. Hum Reprod 1996; 11:790797.
  • 53
    Suzuki T, Sasano H, Takaya R, Fukaya T, Yajima A, Date F, Nagura H: Leukocytes in normal-cycling human ovaries: immunohistochemical distribution and characterization. Hum Reprod 1998;13:21862191.
  • 54
    Wang LJ, Pascoe V, Petrucco OM, Norman RJ: Distribution of leukocyte subpopulations in the human corpus luteum. Hum Reprod 1992; 7:197202.
  • 55
    Gaytán F, Morales C, García-Pardo L, Reymundo C, Bellido C, Sanchez-Crlado JE: Macrophages, cell proliferation, and cell death in the human menstrual corpus luteum. Biol Reprod 1998; 59:417425.
  • 56
    Duncan WC, Rodger FE, Illingworth PJ: The human corpus luteum: reduction in macrophages during simulated maternal recognition of pregnancy. Hum Reprod 1998; 13:24352442.
  • 57
    Penny LA, Armstrong DG, Baxter G, Hogg C, Kindahl H, Bramley T, Watson ED, Webb R: Expression of monocyte chemoattractant protein-1 in the bovine corpus luteum around the time of natural luteolysis. Biol Reprod 1998; 59:14641469.
  • 58
    Kliem H, Berisha B, Meyer HHD, Schams D: Regulatory changes of apoptotic factors in the bovine corpus luteum after induced luteolysis. Mol Reprod Dev 2009; 76:220230.
  • 59
    Cavicchio VA, Pru JK, Davis BS, Davis JS, Rueda BR, Townson DH: Secretion of monocyte chemoattractant protein-1 by endothelial cells of the bovine corpus luteum: regulation by cytokines but not prostaglandin F2α. Endocrinology 2002; 143:35823589.
  • 60
    Tsai SJ, Juengel JL, Wiltbank MC: Hormonal regulation of monocyte chemoattractant protein-1 messenger ribonucleic acid expression in corpora lutea. Endocrinology 1997; 138:45174520.
  • 61
    Polec A, Tanbo T, Fedorcsak P: Cellular interaction regulates interleukin-8 secretion by granulosa-lutein cells and monocytes/macrophages. Am J Reprod Immunol 2009; 61:8594.
  • 62
    Lawler DF, Brazil TJ, Dagleish MP, Watson ED: Chemoattractant properties of conditioned medium from equine corpora lutea collected at various stages of the oestrous cycle. Equine Vet J 2002; 34:279282.
  • 63
    Petroff MG, Petroff BK, Pate JL: Expression of cytokine messenger ribonucleic acids in the bovine corpus luteum. Endocrinology 1999; 140:10181021.
  • 64
    Sakumoto R, Berisha B, Kawate N, Schams D, Okuda K: Tumor necrosis factor-α and its receptor in bovine corpus luteum throughout the estrous cycle. Biol Reprod 2000; 62:192199.
  • 65
    Shaw DW, Britt JH: Concentrations of tumor necrosis factor alpha and progesterone within the bovine corpus luteum sampled by continuous-flow microdialysis during luteolysis in vivo. Biol Reprod 1995; 53:847854.
  • 66
    Benyo DF, Pate JL: Tumor necrosis factor-alpha alters bovine luteal cell synthetic capacity and viability. Endocrinology 1992; 130:854860.
  • 67
    Cannon MJ, Pate JL: Role of major histocompatibility molecules in luteal function. Reprod Biol Endocrinol 2003; 1:93.
  • 68
    Skarzynski DJ, Bah MM, Deptula KKM, Woclawek-Potocka I, Korzekwa A, Shibaya M, Pilawski W, Okuda K: Roles of tumor necrosis factor-α of the estrous cycle in cattle: an in vivo study. Biol Reprod 2003; 69:19071913.
  • 69
    Korzekwa A, Murakami S, Woclawek-Potocka I, Bah MM, Okuda K, Skarzynski DJ: The influence of tumor necrosis factor α (TNF) on the secretory function of bovine corpus luteum: TNF and its receptors expression during the estrous cycle. Reprod Biol 2008; 8:245262.
  • 70
    Fairchild DL, Pate JL: Interferon-gamma induction of major histocompatibility complex antigens on cultured bovine luteal cells. Biol Reprod 1989; 40:453.
  • 71
    Fairchild DL, Pate JL: Modulation of bovine luteal cell synthetic capacity by interferon-gamma. Biol Reprod 1991; 44:357363.
  • 72
    Taniguchi H, Yokomizo Y, Okuda K: Fas-Fas ligand system mediates luteal cell death in bovine corpus luteum. Biol Reprod 2002; 66:754759.
  • 73
    Cannon MJ, Pate JL: Indoleamine 2,3-dioxygenase participates in the interferon-gamma-induced cell death process in cultured bovine luteal cells. Biol Reprod 2006; 74:552559.
  • 74
    Krakauer T, Oppenheim JJ: IL-1 and tumor necrosis factor-alpha each up-regulate both the expression of IFN-gamma receptors and enhance IFN-gamma-induced HLA-DR expression on human monocytes and a human monocytic cell line (THP-1). J Immunol 1993; 150:12051211.
  • 75
    Petroff MG, Petroff BK, Pate JL: Mechanisms of cytokine-induced death of cultured bovine luteal cells. Reproduction 2001; 121:753760.
  • 76
    Al-Zi’abi MO, Bowolaksono A, Okuda K: Survival role of locally produced acetylcholine in the bovine corpus luteum. Biol Reprod 2009; 80:823832.
  • 77
    Rueda BR, Hendry IR, Hendry WJ III, Stormshak F, Slayden OD, Davis JS: Decreased progesterone levels and progesterone receptor antagonists promote apoptotic cell death in bovine luteal cells. Biol Reprod 2000; 62:269276.
  • 78
    Nothnick WB, Pate JL: Interleukin-1β is a potent stimulator of prostaglandin synthesis in bovine luteal cells. Biol Reprod 1990; 43:898.
  • 79
    Nishimura R, Bowolaksono A, Acosta TJ, Murakami S, Piotrowska K, Skarzynski DJ, Okuda K: Possible role of interleukin-1 in the regulation of bovine corpus luteum throughout the luteal phase. Biol Reprod 2004; 71:16881693.
  • 80
    Bove SE, Petroff MG, Nishibori M, Pate JL: Macrophage migration inhibitory factor in the bovine corpus luteum: characterization of steady-state messenger ribonucleic acid and immunohistochemical localization. Biol Reprod 2000; 62:879885.
  • 81
    Brunswig-Spickenheier B, Mukhopadhyay AK: Expression of osteopontin (OPN) mRNA in bovine ovarian follicles and corpora lutea. Reprod Domest Anim 2003; 38:175181.
  • 82
    Poole DH, Ndiaye K, Pate JL: Potential role of secreted phosphoprotein 1 in the bovine corpus luteum. World Congress on Reproductive Biology 2001; abstract no. 34.
  • 83
    Gangrade BK, Gotcher ED, Davis JS, May JV: The secretion of transforming growth factor-beta by bovine luteal cells in vitro. Mol Cell Endocrinol 1993; 93:117123.
  • 84
    Hou X, Arvisais EW, Jiang C, Chen D, Roy SK, Pate JL, Hansen TR, Rueda BR, Davis JS: Prostaglandin F2α stimulates the expression and secretion of transforming growth factor B1 via induction of the early growth response 1 gene (EGR1) in the bovine corpus luteum. Mol Endocrinol 2008; 22:403414.
  • 85
    Simón C, Frances A, Piquette G, Polan ML: Immunohistochemical localization of the interleukin-1 system in the mouse ovary during follicular growth, ovulation, and luteinization. Biol Reprod 1994; 50:449457.
  • 86
    Tsuji Y, Tamaoki TH, Hasegawa A, Kashiwamura S, Iemoto A, Ueda H, Muranaka J, Adachi S, Furuyama J, Okamura H, Koyama K: Expression of interleukin-18 and its receptor in mouse ovary. Am J Reprod Immunol 2001; 46:349357.
  • 87
    Hurwitz A, Finci-Yeheskel F, Yagel S, Shimonovitz S, Laufer N, Adashi EY, Mayer M: Interleukin-1β inhibits progesterone accumulation in rat corpora luteal cell cultures in a mechanism dissociated from its effects on nitric oxide and prostaglandin E accumulation. Mol Cell Endocrinol 1997; 133:4148.
  • 88
    Chen HF, Shew JY, Chao KH, Chang LJ, Ho HN, Yang YS: Luteinizing hormone up-regulates the expression of interleukin-1β mRNA in human granulose-luteal cells. Am J Reprod Immunol 2000; 43:125133.
  • 89
    Miceli F, Tropea A, Minici F, Navarra P, Lanzone A, Apa R: Interleukin-1β stimulates progesterone production by in vitro human luteal cells: evidence of a mediatory role of prostaglandins. J Clin Endocrinol Metab 2003; 88:26902694.
  • 90
    Castro A, Castro O, Troncoso JL, Kohen P, Simón C, Vega M, Devoto L: Luteal leukocytes are modulators of the steroidogenic process of human mid-luteal cells. Hum Reprod 1998; 13:15841589.
  • 91
    Kohen P, Castro A, Caballero-Campo P, Castro O, Vega M, Makrigiannakis A, Simon C, Carvallo P, Devoto L: Interleukin-1β (IL-1β) is a modulator of human luteal cell steroidogenesis: localization of the IL type I system in the corpus luteum. J Clin Endocrinol Metab 1999; 84:42394245.
  • 92
    Jo T, Terada N, Takauchi Y, Saji F, Nishizawa Y, Tanaka S, Kosaka H: Cytotoxic actions of cytokines on cultured mouse luteal cells are independent of nitric oxide. J Steroid Biochem Mol Biol 1995; 55:291296.
  • 93
    Jo T, Tomiyama T, Ohashi K, Saji F, Tanizawa O, Ozaki M, Yamamoto R, Yamamoto T, Nishizawa Y, Terada N: Apoptosis of cultured mouse luteal cells induced by tumor necrosis factor-alpha and interferon-gamma. Anat Rec 1995;241:7076.
  • 94
    Kuranaga E, Kanuka H, Bannai M, Suzuki M, Nishihara M, Takahashi M: Fas/Fas ligand system in prolactin-induced apoptosis in rat corpus luteum: possible role of luteal immune cells. Biochem Biophys Res Commun 1999; 260:167173.
  • 95
    Peluffo MC, Young KA, Hennebold JD, Stouffer RL: Expression and regulation of tumor necrosis factor (TNF) and TNF-receptor family members in the macaque corpus luteum during the menstrual cycle. Mol Reprod Dev 2009; 76:367378.
  • 96
    Brannstrom M, Friden BE, Jasper M, Norman RJ: Variations in peripheral blood levels of immunoreactive tumor necrosis factor alpha (TNFalpha) throughout the menstrual cycle and secretion of TNFalpha from the human corpus luteum. Eur J Obstet Gynecol Reprod Biol 1999;83:213217.
  • 97
    Henkes LE, Sullivan BT, Lynch MP, Kolesnick R, Arsenault D, Puder M, Davis JS, Rueda BR: Acid sphingomyelinase involvement in tumor necrosis factor alpha-regulated vascular and steroid disruption during luteolysis in vivo. Proc Natl Acad Sci USA 2008; 105:76707675.
  • 98
    Neuvians TP, Schams D, Berisha B, Pfaffl MW: Involvement of pro-inflammatory cytokines, mediators of inflammation, and basic fibroblast growth factor in prostaglandin F2α-induced luteolysis in bovine corpus luteum. Biol Reprod 2004;70:473480.
  • 99
    Friedman A, Weiss S, Levy N, Meidan R: Role of tumor necrosis factor α and its type I receptor in luteal regression: induction of programmed cell death in bovine corpus luteum-derived endothelial cells. Biol Reprod 2000; 63:19051912.
  • 100
    Lehmann I, Brylla E, Sittig D, Spanel-Borowski K, Aust G: Microvascular endothelial cells differ in their basal and tumour necrosis factor-α-regulated expression of adhesion molecules and cytokines. J Vasc Res 2000; 37:408416.
  • 101
    Liptak AR, Sullivan BT, Henkes LE, Wijayagunawardane MPB, Miyamoto A, Davis JS, Rueda BR, Townson DH: Cooperative expression of monocyte chemoattractant protein 1 within the bovine corpus luteum: evidence of immune cell-endothelial cell interactions in a coculture system. Biol Reprod 2005; 72:11691176.
  • 102
    Kisliouk T, Friedman A, Klipper E, Zhou QY, Schams D, Alfaidy N, Meidan R: Expression pattern of prokinectin 1 and its receptors in bovine ovaries during the estrous cycle: involvement in corpus luteum regression and follicular atresia. Biol Reprod 2007; 76:749758.
  • 103
    Cannon MJ, Davis JS, Pate JL: Presence and regulation of messenger ribonucleic acids encoding components of the class II major histocompatibility complex-associated antigen processing pathway in the bovine corpus luteum. Reproduction 2006; 131:689698.
  • 104
    Cannon MJ, Davis JS, Pate JL: Expression of costimulatory molecules in the bovine corpus luteum. Reprod Biol Endocrinol 2007; 5:5.
  • 105
    Benyo DF, Haibel GK, Laufman HB, Pate JL: Expression of major histocompatibility complex antigens on the bovine corpus luteum during the estrous cycle, luteolysis, and early pregnancy. Biol Reprod 1991; 45:229.
  • 106
    Petroff MG, Coggeshall KM, Jones LS, Pate JL: Bovine luteal cells elicit major histocompatibility complex class II-dependent T cell proliferation. Biol Reprod 1997; 57:887893.
  • 107
    Hayday AC: [gamma][delta] cells: a right time and a right place for a conserved way of protection. Annu Rev Immunol 2000; 18:9751026.
  • 108
    Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W, Tonegawa S: Homing of a gamma delta thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 1990; 343:754757.
  • 109
    Haas W, Pereira P, Tonegawa S: Gamma/delta cells. Annu Rev Immunol 1993; 11:637685.
  • 110
    Heyborne KD, Cranfill RL, Carding SR, Born WK, O’Brien RL: Characterization of gamma delta T lymphocytes at the maternal-fetal interface. J Immunol 1992; 149:28722878.
  • 111
    Polgar B, Barakonyi A, Xynos I, Szekeres-Bartho J: The role of gamma/delta T cell receptor positive cells in pregnancy. Am J Reprod Immunol 1999; 41:239244.
  • 112
    Bukovsky A, Caudle MR, Keenan JA: Dominant role of monocytes in control of tissue function and aging. Med Hypotheses 2000; 55:337347.