Antimicrobial Responses in the Male Reproductive Tract of Lipopolysaccharide Challenged Rats

Authors


Suresh Yenugu, Department of Animal Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, India. E-mail: ysnaidu@yahoo.com

Abstract

Citation
Biswas B, Yenugu S. Antimicrobial responses in the male reproductive tract of lipopolysaccharide challenged rats. Am J Reprod Immunol 2011; 65: 557–568

Problem  Innate immune machinery including the Toll-like receptors (TLRs) confers the first line of defense mechanisms to counter pathogenic microorganisms that enter the body. The male reproductive tract is vulnerable to infection and the role of TLRs and the antimicrobial responses that operate to counter infections in this organ system are poorly understood.

Method of Study  Caput and cauda epididymides, testes and seminal vesicles were collected at 0, 3, 6, 9, 12, 15 and 24 h from rats injected intraperitoneally with a single dose of LPS. Plasma testosterone was measured using ELISA. Expression pattern of defensins and Spag11 isoforms were analysed using RT-PCR. Immunohistochemical analyses was performed to determine SPAG11E protein expression following LPS treatment.

Results  We provide the first line of evidence that the male reproductive tract induces the expression of Sperm Associated Antigen 11 (Spag11) mRNA variants and defensins when challenged with lipopolysaccharide (LPS) with a concomitant increase in protein expression. However, there was an inverse relationship between induction of antimicrobial gene expression and plasma testosterone. An increase in the mRNA levels of proinflammatory cytokines was observed parallel to the induction of Spag11 variants and majority of defensin expression in the male reproductive tract.

Conclusion  The increase in Spag11 and defensin mRNA in response to LPS administration demonstrates their importance in protecting the male reproductive tract during infection. Results of this study help to understand male reproductive tract innate immune defense mechanisms and to design novel peptide antibiotics to prevent sexually transmitted diseases.

Ancillary