SEARCH

SEARCH BY CITATION

Keywords:

  • Contraception;
  • infertility;
  • sperm;
  • vaccines

Citation Naz RK. Antisperm contraceptive vaccines: where we are and where we are going? Am J Reprod Immunol 2011; 66: 5–12

This is a review of current status and future perspectives on the development of antisperm contraceptive vaccines (CV) and immunocontraceptives. The development of antisperm CV is an exciting proposition. There is a strong rationale and recent data indicating that this proposition can translate into reality. The search for novel sperm-specific antigens/genes, that can be used for CV, continues using various recent developing technologies. Various approaches of proteomics, genomics, reproductive biology, mucosal immunity and vaccinology and several novel technologies such as gene knockout technology, phage display technology, antibody engineering, differential display technique, subtractive hybridization, and hybridoma technology are being used to delineate sperm-specific antigens and construct CV. Various sperm antigens/genes have been delineated, cloned, and sequenced from various laboratories. Vaccination with these sperm antigens (recombinant/synthetic peptide/DNA) causes a reversible contraceptive effect in females and males of various animal species, by inducing a systemic and local antisperm antibody response. The efficacy is enhanced by combination vaccination, including peptides based on various sperm antigens. Several human novel scFv antibodies with unique complementarity-determining regions (CDRs), that react with specific well-defined fertility-related sperm antigens, have been synthesized. These human infertility-related antibodies may find application in the development of novel immunocontraceptives. Besides finding the novel sperm antigens, the present and future focus is on enhancing the immunogenicity, bioefficacy, and on obliterating the inter-individual variability of the immune response, and proceeding for primate and human clinical trials. Multi-epitope vaccines combining sperm proteins involved in various steps of fertilization cascade have been found to enhance the immunogenicity and bioefficacy of the contraceptive effect. The in vitro synthesis of infertility-related human scFv antibodies may provide unique once-a-month immunocontraceptives, the first of its kind, for human use. The multi-epitope CV and preformed engineered human antibodies of defined specificity may obliterate the concern related to inter-individual variability of the immune response.