• 1
    MacPhee IAM, Fredericks S, Tai T et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002; 74: 14861489.
  • 2
    Staatz C, Taylor P, Tett S. Low tacrolimus concentrations and increased risk of early acute rejection in adult renal transplantation. Nephrol Dial Transplant 2001; 16: 19051909.
  • 3
    Undre NA, Van Hoof J, Christiaans M et al. Low systemic exposure to tacrolimus correlates with acute rejection. Transplant Proc 1999; 31: 296298.
  • 4
    Bottiger Y, Brattstrom C, Tyden G, Sawe J, Groth C-C. Tacrolimus whole blood concentrations correlate closely to side-effects in renal transplant recipients. B J Clin Pharmacol 1999; 48: 445448.
  • 5
    Karanam BV, Vincent SH, Lee Chiu SH. FK506 metabolism in human liver microsomes: investigation of the involvement of cytochrome P450 isoenzymes other than CYP3A4. Drug Metab Dispos 1994; 22: 811814.
  • 6
    Andrews PA, Sen M, Chang RWS. Racial variation in dosage requirements of tacrolimus. Lancet 1996; 348: 1446.
  • 7
    Neylan JF. Racial Differences in renal transplantation after immunosuppression with tacrolimus versus cyclosporine. Transplantation 1998; 65: 515523.
  • 8
    Mancinelli LM, Frassetto L, Floren LC et al. The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups. Clin Pharmacol Ther 2001; 69: 2431.
  • 9
    Felipe CR, Machado PGP, Garcia R, Da Silva Moreira SR, Pestana JOM. The impact of ethnic miscegenation on tacrolimus clinical pharmacokinetics and therapeutic drug monitoring. Clin Transplant 2003; 16: 262272.
  • 10
    Eiselt R, Domanski TL, Zibat A et al. Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 2001; 11: 447458.
  • 11
    Garcia-Martin E, Martinez C, Pizarro RM et al. CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin Pharmacol Ther 2002; 71: 196204.
  • 12
    Min DI, Ellingrod VL. Association of the CYP3A4*1B 5′-flanking region polymorphism with cyclosporine pharmacokinetics in healthy subjects. Ther Drug Monit 2003; 25: 305309.
  • 13
    Von Ahsen N, Richter M, Grupp C, Ringe B, Oellerich M, Armstrong VW. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem 2001; 47: 10481052.
  • 14
    Rivory LP, Qin H, Clarke SJ et al. Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur J Clin Pharmacol 2000; 56: 395398.
  • 15
    Goldammer EM, Mai I, Roots I et al. No influence of the MDR-1 C3435T polymorphisms, the CYP3A4-V-allele or the CYP3A5*3 polymorphism on cyclosporine absorption profiles and outcome in stable renal transplant recipients. Am J Transplant 2003; 3 (Suppl. 5): 425.
  • 16
    Hesselink DA, Van Schaik RH, Van Der Heiden I et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol. Ther 2003; 74: 245254.
  • 17
    Finta C, Zaphiropoulos PG. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene 2000; 260: 1323.
  • 18
    Kuehl P, Zhang J, Lin Y et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383391.
  • 19
    Lin YS, Dowling AL, Quigley SD et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62: 162172.
  • 20
    Hustert E, Haberl M, Burk O et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773779.
  • 21
    Van Schaik RHN, Van Der Heiden IP, Van Den Anker JN, Lindemans J. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 2002; 48: 16681671.
  • 22
    Zheng HX, Webber S, Zeevi A et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant 2003; 3: 477483.
  • 23
    Zheng HX, Zeevi A, Lamba J et al. Tacrolimus nephrotoxicity is predicted by MDR1 exon 21 gene polymorphism while dosing is predicted by cytochrome P4503A5 polymorphism in adult lung transplant patients. Am J Transplant 2003; 3 (Suppl. 5): 426.
  • 24
    Thervet E, Anglicheau D, King B et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76: 12331235.
  • 25
    Anglicheau D, Verstuyft C, Laurent-Puig P et al. Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol 2003; 14: 18891896.
  • 26
    Fredericks S, Holt DW, MacPhee IAM. The pharmacogenetics of immunosuppression for organ transplantation. Am J Pharmacogenomics 2003; 3: 291301.
  • 27
    Canadian Neoral Renal Transplantation Study Group. Absorption profiling of cyclosporin microemulsion (neoral) during the first 2 weeks after renal transplantation. Transplantation 2001; 72: 10241032.
  • 28
    Clase CM, Mahalati K, Kiberd BA et al. Adequate early cyclosporin exposure is critical to prevent renal allograft rejection: patients monitored by absorption profiling. Am J Transplant 2002; 2: 789795.
  • 29
    Ameyaw M-M, Regateiro F, Li T et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001; 11: 217221.
  • 30
    Racusen LC, Solez K, Colvin RB et al. The Banff 97 working classification of renal allograft pathology. Kidney Int 1999; 55: 713723.
  • 31
    Yates CR, Zhang W, Song P et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharm 2003; 43: 555564.