SEARCH

SEARCH BY CITATION

References

  • 1
    Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: Implications for vaccine development. Nat Rev Immunol 2002; 2: 251262.
  • 2
    Heeger PS, Greenspan NS, Kuhlenschmidt S et al. Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J Immunol 1999; 163: 22672275.
  • 3
    Augustine JJ, Siu DS, Clemente MJ, Schulak JA, Heeger PS, Hricik DE. Pre-transplant IFN-gamma ELISPOTs are associated with post-transplant renal function in African American renal transplant recipients. Am J Transplant 2005; 5: 19711975.
  • 4
    Pantenburg B, Heinzel F, Das L, Heeger PS, Valujskikh A. T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J Immunol 2002; 169: 36863693.
  • 5
    Burrows SR, Khanna R, Burrows JM, Moss DJ. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: Implications for graft-versus-host disease. J Exp Med 1994; 179: 11551161.
  • 6
    Adams AB, Williams MA, Jones TR et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 2003; 111: 18871895.
  • 7
    Burrows SR, Silins SL, Khanna R et al. Cross-reactive memory T cells for Epstein-Barr virus augment the alloresponse to common human leukocyte antigens: Degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in alloreactivity. Eur J Immunol 1997; 27: 17261736.
  • 8
    Brehm MA, Markees TG, Daniels KA, Greiner DL, Rossini AA, Welsh RM. Direct visualization of cross-reactive effector and memory allo-specific CD8 T cells generated in response to viral infections. J Immunol 2003; 170: 40774086.
  • 9
    Deacock SJ, Lechler RI. Positive correlation of T cell sensitization with frequencies of alloreactive T helper cells in chronic renal failure patients. Transplantation 1992; 54: 338343.
  • 10
    Cossarizza A, Ortolani C, Paganelli R et al. CD45 isoforms expression on CD4+ and CD8+ T cells throughout life, from newborns to centenarians: Implications for T cell memory. Mech Ageing Dev 1996; 86: 173195.
  • 11
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708712.
  • 12
    Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001; 291: 24132417.
  • 13
    London CA, Lodge MP, Abbas AK. Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 2000; 164: 265272.
  • 14
    Kassiotis G, Garcia S, Simpson E, Stockinger B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol 2002; 3: 244250.
  • 15
    Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 1997; 276: 20572062.
  • 16
    Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 1999; 286: 13771381.
  • 17
    Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen: Memory cells are less dependent on accessory cell costimulation and can respond to many APC types including resting B cells. J Immunol 1994; 152: 26752685.
  • 18
    Sprent J, Surh CD. T cell memory. Annu Rev Immunol 2002; 20: 551579.
  • 19
    Farber DL. T cell memory: Heterogeneity and mechanisms. Clin Immunol 2000; 95: 173181.
  • 20
    Chen Y, Heeger PS, Valujskikh A. In vivo helper functions of alloreactive memory CD4+ T cells remain intact despite donor-specific transfusion and anti-CD40 ligand therapy. J Immunol 2004; 172: 54565466.
  • 21
    Valujskikh A, Pantenburg B, Heeger PS. Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am J Transplant 2002; 2: 501509.
  • 22
    Kupiec-Weglinski JW. Graft rejection in sensitized recipients. Ann Transplant 1996; 1: 3440.
  • 23
    Pearl JP, Parris J, Hale DA et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant 2005; 5: 465474.
  • 24
    Sayegh MH, Wu Z, Hancock WW et al. Allograft rejection in a new allospecific CD4+ TCR transgenic mouse. Am J Transplant 2003; 3: 381389.
  • 25
    Sandner SE, Salama AD, Houser SL, Palmer E, Turka LA, Sayegh MH. New TCR transgenic model for tracking allospecific CD4 T-cell activation and tolerance in vivo. Am J Transplant 2003; 3: 12421250.
  • 26
    Ahmadzadeh M, Hussain SF, Farber DL. Effector CD4 T cells are biochemically distinct from the memory subset: Evidence for long-term persistence of effectors in vivo. J Immunol 1999; 163: 30533063.
  • 27
    Farber DL, Luqman M, Acuto O, Bottomly K. Control of memory CD4 T cell activation: MHC class II molecules on antigen presenting cells and CD4 ligation inhibit memory but not naive CD4 T cells. Immunity 1995; 2: 249259.
  • 28
    Ahmadzadeh M, Hussain SF, Farber DL. Heterogeneity of the memory CD4 T cell response: Persisting effectors and resting memory T cells. J Immunol 2001; 166: 926935.
  • 29
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 11511164.
  • 30
    Ahmadzadeh M, Farber DL. Functional plasticity of an antigen-specific memory CD4 T cell population. Proc Natl Acad Sci USA 2002; 99: 1180211807.
  • 31
    Lyons AB, Parish CR. Determination of lymphocyte division by flow cytometry. J Immunol Methods 1994; 171: 131137.
  • 32
    Patke DS, Farber DL. Modulation of memory CD4 T cell function and survival potential by altering the strength of the recall stimulus. J Immunol 2005; 174: 54335443.
  • 33
    Bingaman AW, Patke DS, Mane VR et al. Novel phenotypes and migratory properties distinguish memory CD4 T cell subsets in lymphoid and lung tissue. Eur J Immunol 2005; 35: 31733186.
  • 34
    Olinescu A, Popescu DE, Turcanu AG. A technique of skin grafting without protective dressing on mice. Arch Roum Pathol Exp Microbiol 1976; 35: 251255.
  • 35
    Patke DS, Ahmadzadeh M, Bingaman AW, Farber DL. Anti-CD3 priming generates heterogeneous antigen-specific memory CD4 T cells. Clin Immunol 2005; 117: 125132.
  • 36
    Goldrath AW, Bogatzki LY, Bevan MJ. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 2000; 192: 557564.
  • 37
    Kieper WC, Troy A, Burghardt JT et al. Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol 2005; 174: 31583163.
  • 38
    Bingaman AW, Ha J, Waitze SY et al. Vigorous allograft rejection in the absence of danger. J Immunol 2000; 164: 30653071.
  • 39
    Lipkowitz S, Greene WC, Rubin AL, Novogrodsky A, Stenzel KH. Expression of receptors for interleukin 2: Role in the commitment of T lymphocytes to proliferate. J Immunol 1984; 132: 3137.
  • 40
    Usherwood EJ, Hogan RJ, Crowther G et al. Functionally heterogeneous CD8+ T-cell memory is induced by Sendai virus infection of mice. J Virol 1999; 73: 72787286.
  • 41
    Wherry EJ, Teichgraber V, Becker TC et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003; 4: 225234.
  • 42
    Masopust D, Lefrancois L. CD8 T-cell memory: The other half of the story. Microbes Infect 2003; 5: 221226.
  • 43
    Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001; 410: 101105.
  • 44
    Sakaguchi S, Sakaguchi N, Shimizu J et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: Their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182: 1832.
  • 45
    Piccirillo CA, Shevach EM. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol 2004; 16: 8188.
  • 46
    Wood KJ, Sakaguchi S. Regulatory lymphocytes: Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199210.
  • 47
    Kingsley CI, Karim M, Bushell AR, Wood KJ. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 2002; 168: 10801086.
  • 48
    Graca L, Thompson S, Lin CY, Adams E, Cobbold SP, Waldmann H. Both CD4+CD25+ and CD4+CD25− regulatory cells mediate dominant transplantation tolerance. J Immunol 2002; 168: 55585565.
  • 49
    Kobashigawa JA, Sabad A, Drinkwater D et al. Pretransplant panel reactive-antibody screens. Are they truly a marker for poor outcome after cardiac transplantation? Circulation 1996; 94(9 Suppl.): II294II297.
  • 50
    Cecka JM. Living donor transplants. Clin Transpl 1995:363377.