SEARCH

SEARCH BY CITATION

References

  • 1
    Bartels-Stringer M, Kramers C, Wetzels JF, Russel FG, Groot H, Rauen U. Hypothermia causes a marked injury to rat proximal tubular cells that is aggravated by all currently used preservation solutions. Cryobiology 2003; 47: 8291.
  • 2
    Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation 1988; 45: 673676.
  • 3
    Hochachka PW. Defense strategies against hypoxia and hypothermia. Science 1986; 231: 234241.
  • 4
    Peters SM, Rauen U, Tijsen MJ et al. Cold preservation of isolated rabbit proximal tubules induces radical-mediated cell injury. Transplantation 1998; 65: 625632.
  • 5
    Salahudeen AK, Huang H, Patel P, Jenkins JK. Mechanism and prevention of cold storage-induced human renal tubular cell injury. Transplantation 2000; 70: 14241431.
  • 6
    Yoshinari D, Takeyoshi I, Kobayashi M et al. Effects of a p38 mitogen-activated protein kinase inhibitor as an additive to university of wisconsin solution on reperfusion injury in liver transplantation. Transplantation 2001; 72: 2227.
  • 7
    Clanachan AS, Jaswal JS, Gandhi M et al. Effects of inhibition of myocardial extracellular-responsive kinase and P38 mitogen-activated protein kinase on mechanical function of rat hearts after prolonged hypothermic ischemia. Transplantation 2003; 75: 173180.
  • 8
    Hashimoto N, Takeyoshi I, Yoshinari D et al. Effects of a p38 mitogen-activated protein kinase inhibitor as an additive to Euro-Collins solution on reperfusion injury in canine lung transplantation. Transplantation 2002; 74: 320326.
  • 9
    Cowan KJ, Storey KB. Mitogen-activated protein kinases: New signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 2003; 206 (Pt 7): 11071115.
  • 10
    Chan EY, Stang SL, Bottorff DA, Stone JC. Hypothermic stress leads to activation of Ras-Erk signaling. J Clin Invest 1999; 103: 13371344.
  • 11
    Abrahamse SL, Van Runnard Heimel P, Hartman RJ, Chamuleau RA, Van Gulik TM. Induction of necrosis and DNA fragmentation during hypothermic preservation of hepatocytes in UW, HTK, and Celsior solutions. Cell Transplant 2003; 12: 5968.
  • 12
    Boutilier RG. Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 2001; 204(Pt 18): 31713181.
  • 13
    Biguzas M, Jablonski P, Howden BO et al. Evaluation of UW solution in rat kidney preservation. II. The effect of pharmacological additives. Transplantation 1990; 49: 10511055.
  • 14
    Pedotti P, Cardillo M, Rigotti P et al. A comparative prospective study of two available solutions for kidney and liver preservation. Transplantation 2004; 77: 15401545.
  • 15
    Hauet T, Baumert H, Amor IB et al. Protection of autotransplanted pig kidneys from ischemia-reperfusion injury by polyethylene glycol. Transplantation 2000; 70: 15691575.
  • 16
    Faure JP, Hauet T, Han Z et al. Polyethylene glycol reduces early and long-term cold ischemia-reperfusion and renal medulla injury. J Pharmacol Exp Ther 2002; 302: 861870.
  • 17
    Hauet T, Goujon JM, Baumert H et al. Polyethylene glycol reduces the inflammatory injury due to cold ischemia/reperfusion in autotransplanted pig kidneys. Kidney Int 2002; 62: 654667.
  • 18
    Wicomb WN, Collins GM. 24-hour rabbit heart storage with UW solution. Effects of low-flow perfusion, colloid, and shelf storage. Transplantation 1989; 48: 69.
  • 19
    Ploeg RJ, Boudjema K, Marsh D et al. The importance of a colloid in canine pancreas preservation. Transplantation 1992; 53: 735741.
  • 20
    Ben Abdennebi H, Steghens JP, Hadj-Aissa A et al. A preservation solution with polyethylene glycol and calcium: A possible multiorgan liquid. Transpl Int 2002; 15: 348354.
  • 21
    Eugene M. Polyethyleneglycols and immunocamouflage of the cells tissues and organs for transplantation. Cell Mol Biol (Noisy-le-grand) 2004; 50: 209215.
  • 22
    Marsh DC, Lindell SL, Fox LE, Belzer FO, Southard JH. Hypothermic preservation of hepatocytes. I. Role of cell swelling. Cryobiology 1989; 26: 524534.
  • 23
    Mack JE, Kerr JA, Vreugdenhil PK, Belzer FO, Southard JH. Effect of polyethylene glycol on lipid peroxidation in cold-stored rat hepatocytes. Cryobiology 1991; 28: 17.
  • 24
    Wilbur KM, Bernheim F, Shapiro OW. The thiobarbituric acid reagent as a test for the oxidation of unsaturated fatty acids by various agents. Arch Biochem 1949; 24: 305313.
  • 25
    Hauet T, Goujon JM, Vandewalle A et al. Trimetazidine reduces renal dysfunction by limiting the cold ischemia/reperfusion injury in autotransplanted pig kidneys. J Am Soc Nephrol 2000; 11: 138148.
  • 26
    Salahudeen AK. Cold ischemic injury of transplanted kidneys: New insights from experimental studies. Am J Physiol Renal Physiol 2004; 287: F181F187.
  • 27
    Doucet C, Dutheil D, Petit I et al. Influence of colloid, preservation medium and trimetazidine on renal medulla injury. Biochim Biophys Acta 2004; 1673: 105114.
  • 28
    Wicomb WN, Hill JD, Avery J, Collins GM. Optimal cardioplegia and 24-hour heart storage with simplified UW solution containing polyethylene glycol. Transplantation 1990; 49: 261264.
  • 29
    Itasaka H, Burns W, Wicomb WN, Egawa H, Collins G, Esquivel CO. Modification of rejection by polyethylene glycol in small bowel transplantation. Transplantation 1994; 57: 645648.
  • 30
    Badet L, Ben Abdennebi H, Petruzzo P et al. Effect of IGL-1, a new preservation solution, on kidney grafts (a pre-clinical study). Transpl Int 2005; 17: 815821.
  • 31
    Hauet T, Mothes D, Goujon JM, Carretier M, Eugene M. Protective effect of polyethylene glycol against prolonged cold ischemia and reperfusion injury: Study in the isolated perfused rat kidney. J Pharmacol Exp Ther 2001; 297: 946952.
  • 32
    Paul A, Wilson S, Belham CM et al. Stress-activated protein kinases: Activation, regulation and function. Cell Signal 1997; 9: 403410.
  • 33
    Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005; 15: 1118.
  • 34
    Koike N, Takeyoshi I, Ohki S, Tokumine M, Matsumoto K, Morishita Y. Effects of adding P38 mitogen-activated protein-kinase inhibitor to celsior solution in canine heart transplantation from non-heart-beating donors. Transplantation 2004; 77: 286292.
  • 35
    Soloff BL, Nagle WA, Moss AJ, Jr, Henle KJ, Crawford JT. Apoptosis induced by cold shock in vitro is dependent on cell growth phase. Biochem Biophys Res Commun 1987; 145: 876883.
  • 36
    Uehara T, Xi Peng X, Bennett B et al. c-Jun N-terminal kinase mediates hepatic injury after rat liver transplantation. Transplantation 2004; 78: 324332.
  • 37
    Arany I, Megyesi JK, Kaneto H, Tanaka S, Safirstein RL. Activation of ERK or inhibition of JNK ameliorates H(2)O(2) cytotoxicity in mouse renal proximal tubule cells. Kidney Int 2004; 65: 12311239.
  • 38
    Ishii M, Suzuki Y, Takeshita K et al. Inhibition of c-Jun NH2-terminal kinase activity improves ischemia/reperfusion injury in rat lungs. J Immunol 2004; 172: 25692577.
  • 39
    Tournier C, Hess P, Yang DD et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288: 870874.
  • 40
    Lamb JA, Ventura JJ, Hess P, Flavell RA, Davis RJ. JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell 2003; 11: 14791489.
  • 41
    Liu J, Lin A. Role of JNK activation in apoptosis: A double-edged sword. Cell Res 2005; 15: 3642.
  • 42
    Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 1999; 89: 115124.
  • 43
    Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999; 22: 667676.