• Behavior;
  • cytoskeleton;
  • LTD;
  • LTP;
  • phosphorylation;
  • somatodendritic localization

Adducins are a family of proteins found in cytoskeleton junctional complexes, which bind and regulate actin filaments and actin-spectrin complexes. In brain, adducin is expressed at high levels and is identified as a constituent of synaptic structures, such as dendritic spines and growth cones of neurons. Adducin-induced changes in dendritic spines are involved in activity-dependent synaptic plasticity processes associated with learning and memory, but the mechanisms underlying these functions remain to be elucidated. Here, β-adducin knockout (KO) mice were used to obtain a deeper insight into the role of adducin in these processes. We showed that β-adducin KO mice showed behavioral, motor coordination and learning deficits together with an altered expression and/or phosphorylation levels of α-adducin and γ-adducin. We found that β-adducin KO mice exhibited deficits in learning and motor performances associated with an impairment of long-term potentiation (LTP) and long-term depression (LTD) in the hippocampus. These effects were accompanied by a decrease in phosphorylation of adducin, a reduction in α-adducin expression levels and upregulation of γ-adducin in hippocampus, cerebellum and neocortex of mutant mice. In addition, we found that the mRNA encoding β-adducin is also located in dendrites, where it may participate in the fine modulation of LTP and LTD. These results strongly suggest coordinated expression and phosphorylation of adducin subunits as a key mechanism underlying synaptic plasticity, motor coordination performance and learning behaviors.