• AMPA receptors;
  • cognitive function;
  • GluR4;
  • knockout mice;
  • prepulse inhibition;
  • schizophrenia

Fast excitatory transmission in the mammalian central nervous system is mediated by AMPA-type glutamate receptors. The tetrameric AMPA receptor complexes are composed of four subunits, GluR1–4. The GluR4 subunit is highly expressed in the cerebellum and the early postnatal hippocampus and is thought to be involved in synaptic plasticity and the development of functional neural circuitry through the recruitment of other AMPA receptor subunits. Previously, we reported an association of the human GluR4 gene (GRIA4) with schizophrenia. To examine the role of the GluR4 subunit in the higher brain function, we generated GluR4 knockout mice and conducted electrophysiological and behavioural analyses. The mutant mice showed normal long-term potentiation (LTP) in the CA1 region of the hippocampus. The GluR4 knockout mice showed mildly improved spatial working memory in the T-maze test. Although the retention of spatial reference memory was intact in the mutant mice, the acquisition of spatial reference memory was impaired in the Barnes circular maze test. The GluR4 knockout mice showed impaired prepulse inhibition. These results suggest the involvement of the GluR4 subunit in cognitive function.