SEARCH

SEARCH BY CITATION

Keywords:

  • BDNF;
  • 5HTTLPR;
  • hippocampus;
  • major depressive disorder;
  • MRI;
  • shape mapping

Neuroimaging research implicates the hippocampus in the aetiology of major depressive disorder (MDD). Imaging genetics studies have investigated the influence of the serotonin transporter-linked polymorphic region (5HTTLPR) and brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on the hippocampus in healthy individuals and patients with depression (MDD). However, conflicting results have led to inconclusive evidence about the effect of 5HTTLPR or BDNF on hippocampal volume (HCV). We hypothesized that analysis methods based on three-dimensional (3D) hippocampal shape mapping could offer improved sensitivity to clarify these effects. Magnetic resonance imaging data were collected in parallel samples of 111 healthy individuals and 84 MDD patients. Manual hippocampal segmentation was conducted and the resulting data used to investigate the influence of 5HTTLPR and BDNF Val66Met genotypes on HCV and 3D shape within each sample. Hippocampal volume normalized by intracranial volume (ICV) showed no significant difference between 5HTTLPR S allele carriers and L/L homozygotes or between BDNF Met allele carriers and Val/Val homozygotes in the group of healthy individuals. Moreover, there was no significant difference in normalized HCV between 5HTTLPR diallelic and triallelic classifications or between the BDNF Val66Met genotypes in MDD patients, although there was a relationship between BDNF Val66Met and ICV. Shape analysis detected dispersed between-group differences, but these effects did not survive multiple testing correction. In this study, there was no evidence of a genetic effect for 5HTTLPR or BDNF Val66Met on hippocampal morphology in either healthy individuals or MDD patients despite the relatively large sample sizes and sensitive methodology.