Inactivation of Pde8b enhances memory, motor performance, and protects against age-induced motor coordination decay


Corresponding author: L. S. Zweifel, Department of Pharmacology, University of Washington, Box 357380, Seattle, WA 98195-7280, USA. E-mail:


Phosphodiesterases (PDEs) are critical regulatory enzymes in cyclic nucleotide signaling. PDEs have diverse expression patterns within the central nervous system (CNS), show differing affinities for cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and regulate a vast array of behaviors. Here, we investigated the expression profile of the PDE8 gene family members Pde8a and Pde8b in the mouse brain. We find that Pde8a expression is largely absent in the CNS; by contrast, Pde8b is expressed in select regions of the hippocampus, ventral striatum, and cerebellum. Behavioral analysis of mice with Pde8b gene inactivation (PDE8B KO) demonstrate an enhancement in contextual fear, spatial memory, performance in an appetitive instrumental conditioning task, motor-coordination, and have an attenuation of age-induced motor coordination decline. In addition to improvements observed in select behaviors, we find basal anxiety levels to be increased in PDE8B KO mice. These findings indicate that selective antagonism of PDE8B may be an attractive target for enhancement of cognitive and motor functions; however, possible alterations in affective state will need to be weighed against potential therapeutic value.