SEARCH

SEARCH BY CITATION

References

  • Arterburn M., Kleinhofs A., Murray T. et al. 2011. Polymorphic nuclear gene sequences indicate a novel genome donor in the polyploid genus Thinopyrum. Hereditas 148: 827.
  • Ayliffe M., Singh R. and Lagudah E. 2008. Durable resistance to wheat rust needed. Curr. Opin. Plant Biol. 11: 187192.
  • Bai G. and Shaner G. 1994. Scab of wheat: prospects for control. Plant Dis. 78: 760766.
  • Bao Y., Li X., Liu S. et al. 2009. Molecular cytogenetic characterization of a new wheat–Thinopyrum intermedium partial amphiploid resistance to powdery mildew and stripe rust. Cytogenet. Genome Res. 126: 390395.
  • Chang Z. J., Zhang X. J., Yang Z. J. et al. 2010. Characterization of a partial wheat–Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas 147: 304312.
  • Chen Q., Friebe B., Conner R. L. et al. 1998. Molecular cytogenetic characterization of Thinopyrum intermedium-derived wheat germplasm specifying resistance to wheat streak mosaic virus. Theor. Appl. Genet. 96: 17.
  • Chen Q., Eudes F., Conner R. L. et al. 2001. Molecular cytogenetic analysis of a durum wheat ×Thinopyrum distichum hybrid used as a new source of resistance to Fusarium head blight in the greenhouse. Plant Breed. 120: 375380.
  • Chen Q., Conner R. L., Sun S. C. et al. 2003. Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat–Thinopyrum intermedium partial amphiploids. Genome 46: 135145.
  • Ellneskog-Staam P. and Merker A. 2002. Chromosome composition, stability and fertility of alloploids between Triticum turgidum var. carthlicum and Thinopyrum junceiforme. Hereditas 136: 5965.
  • Fedak G. and Han F. 2005. Characterization of derivatives from wheat–Thinopyrum wide crossed. Cytogenet. Genome Res. 109: 360367.
  • Fedak G., Chen Q., Conner R. L. et al. 2000. Characterization of wheat–Thinopyrum partial amphiploids by meiotic ana lysis and genomic in situ hybridization. Genome 43: 712719.
  • Friebe B., Mukai Y., Dhaliwal H. S. et al. 1991. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germplasm by C-banidng and in situ hybridization. Theor. Appl. Genet. 81: 381389.
  • Friebe B., Zeller F. J., Mukai Y. et al. 1992. Characterization of rust-resistant wheat–Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor. Appl. Genet. 83: 775782.
  • Friebe B., Jiang J., Raupp W. J. et al. 1996. Characterization of wheat-alien translocation conferring resistance to diseases and pests: current status. Euphytica 91: 5987.
  • Georgieva M., Sepsi A., Tyankova N. et al. 2011. Molecular cytogenetic characterization of two high protein wheat–Thinopyrum intermedium partial amphiploids. J. Appl. Genet. 52: 269277.
  • He R. L., Chang Z. J., Yang Z. J. et al. 2009. Inheritance and mapping of powdery mildew resistance gene Pm43 introgression from Thinopyrum intermeidum into wheat. Theor. Appl. Genet. 118: 11731180.
  • Jiang J., Chen P., Friebe B. et al. 1993. Alloplasmic wheat –Elymus ciliaris chromosome addition lines. Genome 36: 327333.
  • Jin Y. and Singh R. P. 2006. Resistance in US wheat to recent eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis. 90: 476480.
  • Jin Y., Szabo L. J., Pretorious Z. et al. 2008. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 92: 923926.
  • Kishii M., Wang R. R.-C. and Tsujimoto H. 2005. GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. Czech J. Genet. Plant Breed. 41: 9295.
  • Kong L., Anderson J. M. and Ohm W. 2009. Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and develop ment of a Bdv3 marker. Plant Breed. 128: 591597.
  • Li H. J., Arberburn M., Jones S. S. et al. 2005. Murray TD: resistance to eyepot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoelogous group 4 chromosomes. Theor. Appl. Genet. 111: 932940.
  • Liu Z. W. and Wang R. R.-C. 1993. Genome analysis of Elytrigia caespitose, Lophopyrum nodosum, Pseudoroegneria geneiculata ssp. scythica and Thinopyrum intermedium (Triticeae: Gramineae). Genome 36: 102111.
  • Luo P. G., Luo H. Y., Chang Z. J. et al. 2009. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 118: 10591064.
  • McCallum B. and Seto-Goh P. 2005. Physiological specialization of wheat leaf rust (Puccinia triticina) in Canada in 2002. – Can. J. Plant Pathol. 27: 9095.
  • McIntosh R. A., Wellings C. R. and Park R. F. 1995. Wheat rusts: an atlas of resistance genes. – Kluwer Press.
  • Ohm H. W., Anderson J. M., Sharma H. C. et al. 2005. Registration of yellow dwarf viruses resistant wheat germplasm line P961341. – Crop Sci. 45: 805806.
  • Oliver R. E., Cai X., Xu S. S. et al. 2005. Wheat-alien species derivatives: a novel source of resistance to Fusarium head blight in wheat. Crop Sci. 45: 13531360.
  • Pretorius Z. A., Singh R. P., Wagorie W. W. et al. 2000. Dectection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 84: 203.
  • Stack R. W. 2003. History of Fusarium head blight with emphasis on North America. – In: Leonard K. J. and Bushnell W. R. (eds), Fusarium head blight of wheat and barley. APS Press, St Paul, MN, pp. 134.
  • Stokstad E. 2007. Deadly wheat fungus threatens world’s breadbasket. Science 315: 17861787.
  • Xu J. and Conner R. L. 1994. Intravarietal variation in satellites and C-banded chromosomes of Agropyron intermedium ssp. trichophorum cv. Greenleaf. Genome 37: 305310.
  • Zhang Z. Y., Xin Z., Ma Y. Z. et al. 1999. Mapping of a BYDV resistance gene from Thinopyrum intermedium in wheat background by molecular markers. Sci. China Ser. C 42: 663668.