Effects of raised water levels on wet grassland plant communities


  • Coordinating editor: L. Fraser

*Corresponding author; Fax +441273642285; E-mail C.B.Joyce@bton.ac.uk


Questions: What are the effects of raised water levels on wet grassland plant communities and dynamics? To what extent do time since raised water levels, vegetation management and water regime influence community composition?

Location: Pevensey Levels, southeast England, UK.

Methods: Plant communities and hydrology were monitored during 2001-03 within 23 wet grassland meadows and pastures where water levels had been raised for nature conservation at different times over 21 years. Community variations were examined using species abundance and ecological traits.

Results: Water regime, measured as duration of flooding, groundwater level and soil moisture was significantly related to plant community variation. Communities were divided into grasslands where inundation was shallow (≤8 cm) and relatively short (≤3 months) and sites where deeper flooding was prolonged (≥5 months), supporting a variety of wetland vegetation. With increasing wetness, sites were characterised by more bare ground and wetland plants such as sedges, helophytes and hydrophytes, and species with a stress-tolerating competitive strategy. All sites showed considerable annual dynamics, especially those with substantially raised water levels. There were no significant relationships between time since water levels were raised and plant community composition. Grassland management exerted a limited influence upon vegetation compared to water regime.

Conclusions: Grassland plant communities are responsive to raised water levels and have potential for a rapid transition to wetland vegetation, irrespective of grazing or cutting management. Creation or restoration of wet grasslands by (re)wetting is feasible but challenging due to the high dynamism of wetland plant communities and the need for substantially raised water levels and prolonged flooding to produce significant community changes.