Applying a continua landscape approach to evaluate plant response to fragmentation: Primula vulgaris in the Cantabrian mountains


  • Co-ordinating Editor: R. Ohlemuller

Corresponding author; E-mail


Question: Continua landscape approaches conceptualize the effects of habitat fragmentation on the biota by considering fragmented landscapes as continuous gradients, departing from the view of habitat as either suitable (fragment) or unsuitable (matrix). They also consider the ecological gradients or the ‘Umwelt’ (species-specific perception of the landscape) to represent the processes that ultimately limit organisms' ability to colonize and persist within habitat remnants. Are these approaches suitable for evaluating the response of plant species to fragmentation?

Location: Fragmented mid-elevation temperate forests, Cantabrian range, Spain.

Methods: The presence, abundance and demographic structure of populations of the perennial herb Primula vulgaris were sampled across a continuous extent of 100 ha, subdivided into 400 50 m × 50 m sampling units. These variables were related to forest availability, forest subdivision and edge density, topography and the spatial clumpiness of populations (a measure of plant dispersal constraints and, hence, a major surrogate of plant Umwelt).

Results: Fragmentation processes, especially habitat loss, negatively affect P. vulgaris, with a stronger effect on presence than on abundance and demography. Despite the importance of habitat availability, P. vulgaris does not occupy all potentially suitable forest habitat, mostly owing to dispersal constraints. A positive effect of slope on plant presence also suggests some effect of habitat quality in determining establishment and occupancy of forest landscape.

Conclusions: Within-habitat dispersal constraints are as important as forest fragmentation in determining the landscape-scale distribution of P. vulgaris. By assessing the relative role of the diverse fragmentation processes, and of the species' landscape perception, a continua landscape approach proves to be a valuable tool for predicting plant response to landscape change.