• Clonal growth form;
  • Dispersal vector;
  • Leaf longevity;
  • Nitrogen fixation;
  • Ontario;
  • Pollination vector;
  • Seed bank;
  • Trait matrix
  • Newmaster et al. (1998)

Abstract. We examined the changes in prevalence of nine plant traits – including the presence of woody stem tissue, leaf longevity, nitrogen fixation, seed longevity, dispersal vector, pollination vector, and clonal growth form – across a riparian/forest-understory ecotone. This ecotone, found along headwater streams in boreal mixed-wood forests, supports four distinct vegetation zones: streambank, riparian, transition, and upland forest understory. The objective of this study was to identify specific trait patterns that may indicate functional responses to the changes in environmental factors such as nutrient availability and wind exposure that occur across the ecotone. The suites of plant species traits found in each zone were distinct, with a strong change in the prevalence of several traits. Wind and insect pollination, wind and vertebrate diaspore dispersal, and deciduous and evergreen leaves showed the greatest change in prevalence between the vegetation types. Some traits, including insect pollination and vertebrate diaspore dispersal, were strongly correlated within species. The consistent cooccurrence of pairs of traits in the same species suggests common responses by very different traits to the same environmental factor. This study demonstrates that an ecotone can be characterized not only as a discontinuity in species distributions or environmental factors, but also as a discontinuity in the trait spectrum. Examining ecotones from a trait perspective has strong potential for identifying the environmental factors and associated species functional responses that encourage the development of distinct vegetation boundaries.