SEARCH

SEARCH BY CITATION

Keywords:

  • Community functional parameters;
  • Mediterranean grassland;
  • Plant traits;
  • Redundancy analysis

Abstract

Question: Is the assumption of trait independence implied in Westoby's (1998) leaf-height-seed (LHS) ecology strategy scheme upheld in a Mediterranean grazing system dominated by annuals? Is the LHS approach applicable at the community level?

Location: Northern Israel.

Methods: LHS traits (specific leaf area [SLA], plant height and seed mass), and additional leaf traits (leaf dry matter content [LDMC], leaf area, and leaf content of nitrogen [LNC], carbon [LCC], and phosphorus [LPC]), were analyzed at the species and community levels. Treatments included manipulations of grazing intensity (moderate and heavy) and protection from grazing. We focused on species comprising 80% of biomass over all treatments, assuming that these species drive trait relationships and ecosystem processes.

Results: At the species level, SLA and seed mass were negatively correlated, and plant height was positively correlated to LCC. SLA, seed mass, and LPC increased with protection from grazing. At the community level, redundancy analysis revealed one principal gradient of variation: SLA, correlated to grazing, versus seed mass and plant height, associated with protection from grazing. We divided community functional parameters into two groups according to grazing response: (1) plant height, seed mass, LDMC, and LCC, associated with protection from grazing, and (2) SLA, associated with grazing.

Conclusions: The assumption of independence between LHS traits was not upheld at the species level in this Mediterranean grazing system. At the community level, the LHS approach captured most of the variation associated with protection from grazing, reflecting changes in dominance within the plant community.