SEARCH

SEARCH BY CITATION

Keywords:

  • Allometric relationships;
  • Carbon dynamics;
  • Mixed wood;
  • Resource availability;
  • Understorey productivity

Abstract

Question: The effect of overstorey composition on above-ground dynamics of understorey vegetation is poorly understood. This study examines the understorey biomass, production and turnover rates of vascular and non-vascular plants along a conifer–broadleaf gradient of resource availability and heterogeneity.

Location: Canadian boreal forests of northwest Quebec and Ontario.

Methods: We sampled mature stands containing various proportions of black spruce (Picea mariana (Mill.) BSP), trembling aspen (Populus tremuloides Michx.) and jack pine (Pinus banksiana Lamb.). Above-ground biomass of the understorey vegetation was assessed through harvesting; annual growth rates were calculated as the differences between biomass in 2007 and 2008, as estimated by allometric relationships, and turnover rates were estimated as net primary production divided by the biomass in 2007.

Results: Higher aspen presence, linked to greater nutrient availability in the forest floor, was generally associated with higher vascular biomass and production in the understorey. This effect was less pronounced in sites of high intrinsic fertility. In contrast, bryophyte biomass was positively associated with conifer abundance, particularly in wet sites of the Quebec study area. Non-linear responses resulted in total understorey biomass being lower under mixed canopies than under pure aspen or pure conifer canopies. Turnover rates did not differ with overstorey composition.

Conclusions: While resource availability is a main driver of understorey productivity, resources as drivers appear to differ with differences in understorey strata components, i.e. vascular versus non-vascular plants. Resource heterogeneity induced by a mixed canopy had overall negative effects on understorey above-ground productivity, as this productivity seemed to rely on species adapted to the specific conditions induced by a pure canopy.