• equine;
  • exposure;
  • large animal;
  • portable X-ray;
  • shielding;
  • tube leakage

Hand holding of portable X-ray units is common in large animal ambulatory veterinary practice. Portable X-ray equipment manuals, veterinary teaching institutions, and state regulations discourage, or prohibit, hand holding of portable X-ray units. Our goal was to quantify surface radiation leakage of a typical portable X-ray unit and to measure operator exposure at simulated hand and collar positions during imaging of the equine distal extremity. Each exposure for the study was performed at 80 kVp and 7.5 mAs and repeated 10 times. Measurement of tube radiation leakage was performed along each surface of the portable X-ray unit. To determine the operator exposure more accurately, an equine cadaver limb was used to generate scatter radiation for the following views: lateral carpus, lateral foot, palmaroproximal–palmarodistal, and dorsal 60° proximal–palmarodistal obliques of the navicular region. A Pancake Ion Chamber was placed at the handle and at simulated collar position to record estimated occupational exposure. To estimate the effect of lead shielding, exposure measurements were performed within the primary beam and behind a 0.5 mm lead equivalent apron and within an >0.5 mm lead equivalent glove. The average hand and collar dose was 0.471 and 0.327 mR/exposure, respectively. The lead apron and glove attenuated the primary beam 96.9 and 99.2%, respectively. This reduced average hand and collar exposures to 0.0038 and 0.0101 mR/exposure, respectively. Theoretical occupational limits are reached for the collar (whole body) before the hand (extremity).