SEARCH

SEARCH BY CITATION

References

  • 1
    Faulds CB (2003) Feruloyl esterases: Molecular tools to unravel cell structure. Recent Res Dev Appl Microbiol Biotechnol 1, 245275.
  • 2
    Coutinho PM & Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering (GilbertHJ, DaviesGJ, HenrissatB & SvenssonB, eds), pp. 312. Royal Society of Chemistry, Cambridge.
  • 3
    Crepin VF, Faulds CB & Connerton IF (2004) Functional recognition of new classes of feruloyl esterases. Appl Microbiol Biotechnol 63, 647652.
  • 4
    Faulds CB & Williamson G (1994) Purification and characterization of a ferulic acid esterase (FAE-III) from Aspergillus niger: specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140, 779787.
  • 5
    Walsh C (1976) Enzymatic Reaction Mechanism. W.H. Freeman & Co, San Francisco.
  • 6
    Blow DM (1976) Structure and mechanism of chymotrypsin. Biochemistry 9, 145152.
  • 7
    Vyas NK (1991) Atomic features of protein–carbohydrate interactions. Curr Opin Struct Biol 1, 732740.
  • 8
    Quiocho FA (1986) Carbohydrate-binding proteins: tertiary structures and protein–sugar interactions. Ann Rev Biochem 55, 278315.
  • 9
    Clarke AJ (1987) Essential tryptophan residues in the function of cellulase from Schizophyllum commune. Biochim Biophys Acta 912, 424431.
  • 10
    Keskar SS, Srinivasan MC & Deshpande VV (1989) Chemical modification of a xylanase from a thermotolerant Streptomyces. Evidence for essential tryptophan and cysteine residues at the active site. Biochem J 261, 4955.
  • 11
    Deshpande V, Hinge J & Rao M (1990) Chemical modification of xylanases: evidence for essential tryptophan and cysteine residues at the active site. Biochim Biophys Acta 1041, 172177.
  • 12
    Gibson RM & Svensson B (1986) Chemical modification of barley malt α-amylase 2: involvement of tryptophan and tyrosine residues in enzyme activity. Carlsberg Res Comm 51, 295308.
  • 13
    de Vries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RHH, Faulds CB, Williamson G, van den Hombergh JPTW & Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63, 46384644.
  • 14
    Aliwan FO (1998) Mechanism, structure and specificity of a feruloyl esterase from Aspergillus niger. PhD Thesis, University of East Anglia, Norwich, UK.
  • 15
    Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, Gonzalez R & Faulds CB (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J Mol Biol 338, 495506.
  • 16
    McAuley KE, Svendsen A, Patkar SA & Wilson KS (2004) Structure of a feruloyl esterase from Aspergillus niger. Acta Crystallogr D60, 878887.
  • 17
    Ollis DL, Cheah E, Cygler M, Dijkstra F, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Scrag J, Sussman JL, Verschueren KHG & Glodman A (1992) The α/β hydrolase fold. Prot Eng 5, 197211.
  • 18
    Lawson DM, Brzozowski AM, Dodson GG, Hubbard RE, Huge-Jensen B, Boel E & Derewenda ZS (1994) The three-dimensional structures of two lipases from filamentous fungi. In Lipases: Their Biochemistry, Structure and Application (WoolleyP & PetersenS, eds), pp. 7794. Cambridge University Press, Cambridge, UK.
  • 19
    Derewenda ZS, Derewenda U & Dodson G (1992) The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9Å resolution. J Mol Biol 227, 818839.
  • 20
    Prates JAM, Tarbouriech N, Charnock SJ, Fontes CMGA, Ferreira LMA & Davies GJ (2001) The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. Structure 9, 11831190.
  • 21
    Schubot FD, Kataeva IA, Blum DL, Shah AC, Ljungdahl LG, Rose JP & Wang BC (2001) Structural basis for the substrate specificity of the feruloyl esterase domain of the cellulosomal xylanase Z from Clostridium thermocellum. Biochemistry 40, 1252412532.
  • 22
    Aliwan FO, Kroon PA, Faulds CB, Pickersgill R & Williamson G (1999) Ferulic acid esterase-III from Aspergillus niger does not exhibit lipase activity. J Sci Food Agric 79, 457459.
  • 23
    Faulds CB, Kroon PA, Saulnier L, Thibault J-F & Williamson G (1995) Release of ferulic acid from maize bran and derived oligosaccharides by Aspergillus niger esterases. Carbohydr Polymers 27, 187190.
  • 24
    Kroon PA, Faulds CB, Brézillon C & Williamson G (1997) Methyl phenylalkanoates as substrates to probe the active sites of esterases. Eur J Biochem 248, 245251.
  • 25
    Andersen A, Svendsen J, Vind SF, Lassen C, Hjort K, Borch SA & Patkar SA (2002) Studies on ferulic acid esterase activity in fungal lipases and cutinases. Colloids Surf Sect B 26, 4755.
  • 26
    Juge N, Williamson G, Puigserver A, Cummings NJ, Connerton IF & Faulds CB (2001) High-level production of recombinant Aspergillus niger cinnamoyl esterase (FAEA) in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res 1, 127132.
  • 27
    Levasseur A, Pagès S, Fierobe H-P, Navarro D, Punt P, Belaïch J-P, Asther M & Record E (2004) Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain. Appl Environ Microbiol 70, 69846991.
  • 28
    Blum DL, Kataeva IA, Li X-L & Ljungdahl LG (2000) Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182, 13461351.
  • 29
    Bachovchin WW (1986) 15N NMR spectroscopy of hydrogen–bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism. Biochemistry 25, 77517759.
  • 30
    Ghosh D, Sawick M, Lala P, Erman M, Pangborn W, Eyzaguirre J, Gutiérrez R, Jörnvall H & Thiel DJ (2001) Multiple conformations of catalytic serine and histidine in acetylxylan esterase at 0.90Å. J Biol Chem 276, 1115911166.
  • 31
    Longhi S, Czjzek M, Lamzin V, Nicolas A & Cambillau C (1997) Atomic resolution (1.0 Å) crystal structure of Fusarium solani cutinase: stereochemical analysis. J Mol Biol 268, 779799.
  • 32
    Faulds CB, Zanicelli Z, Crepin VF, Connerton IF, Juge N, Bhat MK & Waldron KW (2003) Specificity of feruloyl esterases for water-extractable and water-unextractable feruloylated polysaccharides: influence of xylanase. J Cereal Sci 38, 281288.
  • 33
    Hakulinen N, Tenkanen M & Rouvinen J (2000) Three-dimensional structure of the catalytic core of acetylxylan esterase from Trichoderma reesei: insights into the deacetylation mechanism. J Struct Biol 132, 189190.
  • 34
    Makaroba O, Kamberov E & Margolis B (2000) Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970972.
  • 35
    Borneman WS, Hartley RD, Himmelsbach DS & Ljungdahl LG (1990) Assay for trans-p-coumaroyl esterase using a specific substrate from plant cell walls. Anal Biochem 190, 129133.
  • 36
    Leslie AGW (1987) Profile fitting. In Proceedings of the CCP4 Study Weekend. (MachinJR & PapizMZ, eds), pp. 3950. SERC Daresbury Laboratory, Warrington.
  • 37
    Bailey S (1994) The CCP4 Suite: programs for protein crystallography. Acta Crystallogr D50, 760763.
  • 38
    Navaza J (1994) AmoRe: an automated package for molecular replacement. Acta Crystallogr A50, 157163.
  • 39
    Navaza J (2001) Implementation of molecular replacement in Amore. Acta Crystallogr D57, 13671372.
  • 40
    Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T & Warren GL (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D54, 905921.
  • 41
    Laskowski RA, MacArthur MW, Moss DS & Thornton JM (1993) PROCHEK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26, 283291.
  • 42
    Kraulis P (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24, 946950.
  • 43
    Merritt E & Bacon D (1997) Raster3D: a photorealistic molecular graphics. Methods Enzymol 277, 505524.
  • 44
    Nicholls A, Sharp KA & Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281296.
  • 45
    Brézillon C, Kroon PA, Faulds CB, Brett GM & Williamson G (1996) Novel ferulic acid esterases are induced by growth of Aspergillus niger on sugar-beet pulp. Appl Microbiol Biotechnol 45, 371376.
  • 46
    Sreerama N & Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209, 3244.
  • 47
    Leadbetter RJ (1998) Grafit, Version 4.0. Erithacus Software Ltd, Staines, UK.
  • 48
    Saitou N & Mei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406425.
  • 49
    Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG & Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 46734680.