• 1
    Metcalfe DD, Baram D & Mekori YA (1997) Mast cells. Physiol Rev 77, 10331079.
  • 2
    Galli SJ, Nakae S & Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6, 135142.
  • 3
    Benoist C & Mathis D (2002) Mast cells in autoimmune disease. Nature 420, 875878.
  • 4
    Kitamura Y, Go S & Hatanaka K (1978) Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52, 447452.
  • 5
    Blank U & Rivera J (2004) The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol 25, 266273.
  • 6
    Boyce JA (2005) Eicosanoid mediators of mast cells: receptors, regulation of synthesis, and pathobiologic implications. Chem Immunol Allergy 87, 5979.
  • 7
    Miller HR & Pemberton AD (2002) Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology 105, 375390.
  • 8
    Caughey G (2001) New developments in the genetics and activation of mast cell proteases. Mol Immunol 38, 13531357.
  • 9
    Schwartz LB, Lewis RA, Seldin D & Austen KF (1981) Acid hydrolases and tryptase from secretory granules of dispersed human lung mast cells. J Immunol 126, 12901294.
  • 10
    Schwartz LB, Sakai K, Bradford TR, Ren S, Zweiman B, Worobec AS & Metcalfe DD (1995) The alpha form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J Clin Invest 96, 27022710.
  • 11
    Vanderslice P, Ballinger SM, Tam EK, Goldstein SM, Craik CS & Caughey GH (1990) Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family. Proc Natl Acad Sci USA 87, 38113815.
  • 12
    Miller JS, Moxley G & Schwartz LB (1990) Cloning and characterization of a second complementary DNA for human tryptase. J Clin Invest 86, 864870.
  • 13
    Huang C, De Sanctis GT, O'Brien PJ, Mizgerd JP, Friend DS, Drazen JM, Brass LF & Stevens RL (2001) Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung. J Biol Chem 276, 2627626284.
  • 14
    Harris JL, Niles A, Burdick K, Maffitt M, Backes BJ, Ellman JA, Kuntz I, Haak-Frendscho M & Craik CS (2001) Definition of the extended substrate specificity determinants for beta- tryptases I and II. J Biol Chem 276, 3494134947.
  • 15
    Miller JS, Westin EH & Schwartz LB (1989) Cloning and characterization of complementary DNA for human tryptase. J Clin Invest 84, 11881195.
  • 16
    Pallaoro M, Fejzo MS, Shayesteh L, Blount JL & Caughey GH (1999) Characterization of genes encoding known and novel human mast cell tryptases on chromosome 16p13.3. J Biol Chem 274, 33553362.
  • 17
    Sakai K, Ren S & Schwartz LB (1996) A novel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I [see comments]. J Clin Invest 97, 988995.
  • 18
    Huang C, Li L, Krilis SA, Chanasyk K, Tang Y, Li Z, Hunt JE & Stevens RL (1999) Human tryptases alpha and beta/II are functionally distinct due, in part, to a single amino acid difference in one of the surface loops that forms the substrate-binding cleft. J Biol Chem 274, 1967019676.
  • 19
    Marquardt U, Zettl F, Huber R, Bode W & Sommerhoff C (2002) The crystal structure of human alpha1-tryptase reveals a blocked substrate-binding region. J Mol Biol 321, 491502.
  • 20
    Schwartz LB, Min HK, Ren S, Xia HZ, Hu J, Zhao W, Moxley G & Fukuoka Y (2003) Tryptase precursors are preferentially and spontaneously released, whereas mature tryptase is retained by HMC-1 cells, Mono-Mac-6 cells, and human skin-derived mast cells. J Immunol 170, 56675673.
  • 21
    Caughey GH, Raymond WW, Blount JL, Hau LW, Pallaoro M, Wolters PJ & Verghese GM (2000) Characterization of human gamma-tryptases, novel members of the chromosome 16p mast cell tryptase and prostasin gene families. J Immunol 164, 65666575.
  • 22
    Wong GW, Tang Y, Feyfant E, Sali A, Li L, Li Y, Huang C, Friend DS, Krilis SA & Stevens RL (1999) Identification of a new member of the tryptase family of mouse and human mast cell proteases which possesses a novel COOH-terminal hydrophobic extension. J Biol Chem 274, 3078430793.
  • 23
    Wong GW, Foster PS, Yasuda S, Qi JC, Mahalingam S, Mellor EA, Katsoulotos G, Li L, Boyce JA, Krilis SA & Stevens RL (2002) Biochemical and functional characterization of human transmembrane tryptase (TMT)/tryptase gamma. TMT is an exocytosed mast cell protease that induces airway hyperresponsiveness in vivo via an interleukin-13/interleukin-4 receptor alpha/signal transducer and activator of transcription (STAT) 6-dependent pathway. J Biol Chem 277, 4190641915.
  • 24
    Wang HW, McNeil HP, Husain A, Liu K, Tedla N, Thomas PS, Raftery M, King GC, Cai ZY & Hunt JE (2002) Delta tryptase is expressed in multiple human tissues, and a recombinant form has proteolytic activity. J Immunol 169, 51455152.
  • 25
    Reynolds DS, Stevens RL, Lane WS, Carr MH, Austen KF & Serafin WE (1990) Different mouse mast cell populations express various combinations of at least six distinct mast cell serine proteases. Proc Natl Acad Sci USA 87, 32303234.
  • 26
    Huang C, Friend DS, Qiu WT, Wong GW, Morales G, Hunt J & Stevens RL (1998) Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol 160, 19101919.
  • 27
    Ghildyal N, Friend DS, Stevens RL, Austen KF, Huang C, Penrose JF, Sali A & Gurish MF (1996) Fate of two mast cell tryptases in V3 mastocytosis and normal BALB/c mice undergoing passive systemic anaphylaxis: prolonged retention of exocytosed mMCP-6 in connective tissues, and rapid accumulation of enzymatically active mMCP-7 in the blood. J Exp Med 184, 10611073.
  • 28
    McNeil HP, Reynolds DS, Schiller V, Ghildyal N, Gurley DS, Austen KF & Stevens RL (1992) Isolation, characterization, and transcription of the gene encoding mouse mast cell protease 7. Proc Natl Acad Sci USA 89, 1117411178.
  • 29
    Stevens RL, Friend DS, McNeil HP, Schiller V, Ghildyal N & Austen KF (1994) Strain-specific and tissue-specific expression of mouse mast cell secretory granule proteases. Proc Natl Acad Sci USA 91, 128132.
  • 30
    Huang C, Wong GW, Ghildyal N, Gurish MF, Sali A, Matsumoto R, Qiu WT & Stevens RL (1997) The tryptase, mouse mast cell protease 7, exhibits anticoagulant activity in vivo and in vitro due to its ability to degrade fibrinogen in the presence of the diverse array of protease inhibitors in plasma. J Biol Chem 272, 3188531893.
  • 31
    Matsumoto R, Sali A, Ghildyal N, Karplus M & Stevens RL (1995) Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to heparin serglycin proteoglycans. J Biol Chem 270, 1952419531.
  • 32
    Hunt JE, Stevens RL, Austen KF, Zhang J, Xia Z & Ghildyal N (1996) Natural disruption of the mouse mast cell protease 7 gene in the C57BL/6 mouse. J Biol Chem 271, 28512855.
  • 33
    Wong GW & Stevens RL (2005) Identification of a subgroup of glycosylphosphatidylinositol-anchored tryptases. Biochem Biophys Res Commun 336, 579584.
  • 34
    Wong GW, Yasuda S, Morokawa N, Li L & Stevens RL (2004) Mouse chromosome 17A3.3 contains 13 genes that encode functional tryptic-like serine proteases with distinct tissue and cell expression patterns. J Biol Chem 279, 24382452.
  • 35
    Soto D, Malmsten C, Blount JL, Muilenburg DJ & Caughey GH (2002) Genetic deficiency of human mast cell alpha-tryptase. Clin Exp Allergy 32, 10001006.
  • 36
    Yu JX, Chao L, Ward DC & Chao J (1996) Structure and chromosomal localization of the human prostasin (PRSS8) gene. Genomics 32, 334340.
  • 37
    Yu JX, Chao L & Chao J (1995) Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mRNA. J Biol Chem 270, 1348313489.
  • 38
    Morii E, Tsujimura T, Jippo T, Hashimoto K, Takebayashi K, Tsujino K, Nomura S, Yamamoto M & Kitamura Y (1996) Regulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood 88, 24882494.
  • 39
    Ogihara H, Kanno T, Morii E, Kim DK, Lee YM, Sato M, Kim WY, Nomura S, Ito Y & Kitamura Y (1999) Synergy of PEBP2/CBF with mi transcription factor (MITF) for transactivation of mouse mast cell protease 6 gene. Oncogene 18, 46324639.
  • 40
    Morii E, Oboki K, Kataoka TR, Igarashi K & Kitamura Y (2002) Interaction and cooperation of mi transcription factor (MITF) and myc-associated zinc-finger protein-related factor (MAZR) for transcription of mouse mast cell protease 6 gene. J Biol Chem 277, 85668571.
  • 41
    Kim DK & Lee YM (2004) Requirement of c-jun transcription factor on the mouse mast cell protease-6 expression in the mast cells. Arch Biochem Biophys. 431, 7178.
  • 42
    Funaba M, Ikeda T, Murakami M, Ogawa K & Abe M (2005) Up-regulation of mouse mast cell protease-6 gene by transforming growth factor-beta and activin in mast cell progenitors. Cell Signal 17, 121128.
  • 43
    Ogihara H, Morii E, Kim DK, Oboki K & Kitamura Y (2001) Inhibitory effect of the transcription factor encoded by the mutant mi microphthalmia allele on transactivation of mouse mast cell protease 7 gene. Blood 97, 645651.
  • 44
    Morii E, Ogihara H, Oboki K, Kataoka TR, Jippo T & Kitamura Y (2001) Effect of MITF on transcription of transmembrane tryptase gene in cultured mast cells of mice. Biochem Biophys Res Commun 289, 12431246.
  • 45
    Schwartz LB, Lewis RA & Austen KF (1981) Tryptase from human pulmonary mast cells. Purification and characterization. J Biol Chem 256, 1193911943.
  • 46
    Yurt RW, Leid RW Jr, Spragg J & Austen KF (1977) Immunologic release of heparin from purified rat peritoneal mast cells. J Immunol 118, 12011207.
  • 47
    Schwartz LB & Austen KF (1980) Enzymes of the mast cell granule. J Invest Dermatol 74, 349353.
  • 48
    Forsberg E, Pejler G, Ringvall M, Lunderius C, Tomasini-Johansson B, Kusche-Gullberg M, Eriksson I, Ledin J, Hellman L & Kjellen L (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme [see comments]. Nature 400, 773776.
  • 49
    Humphries DE, Wong GW, Friend DS, Gurish MF, Qiu WT, Huang C, Sharpe AH & Stevens RL (1999) Heparin is essential for the storage of specific granule proteases in mast cells [see comments]. Nature 400, 769772.
  • 50
    Henningsson F, Ledin J, Lunderius C, Wilen M, Hellman L & Pejler G (2002) Altered storage of proteases in mast cells from mice lacking heparin: a possible role for heparin in carboxypeptidase A processing. Biol Chem 383, 793801.
  • 51
    Razin E, Stevens RL, Akiyama F, Schmid K & Austen KF (1982) Culture from mouse bone marrow of a subclass of mast cells possessing a distinct chondroitin sulfate proteoglycan with glycosaminoglycans rich in N-acetylgalactosamine-4,6-disulfate, J Biol Chem 257, 72297236.
  • 52
    Abrink M, Grujic M & Pejler G (2004) Serglycin is essential for maturation of mast cell secretory granule. J Biol Chem. 279, 4089740905.
  • 53
    Alter SC, Metcalfe DD, Bradford TR & Schwartz LB (1987) Regulation of human mast cell tryptase. Effects of enzyme concentration, ionic strength and the structure and negative charge density of polysaccharides. Biochem J 248, 821827.
  • 54
    Hallgren J, Spillmann D & Pejler G (2001) Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin, J Biol Chem 276, 4277442781.
  • 55
    Hallgren J, Lindahl S & Pejler G (2005) Structural requirements and mechanism for heparin-dependent activation and tetramerization of human betaI- and betaII-tryptase. J Mol Biol 345, 129139.
  • 56
    Goldstein SM, Leong J, Schwartz LB & Cooke D (1992) Protease composition of exocytosed human skin mast cell protease- proteoglycan complexes. Tryptase resides in a complex distinct from chymase and carboxypeptidase. J Immunol 148, 24752482.
  • 57
    Metcalfe DD, Lewis RA, Silbert JE, Rosenberg RD, Wasserman SI & Austen KF (1979) Isolation and characterization of heparin from human lung. J Clin Invest 64, 15371543.
  • 58
    Whitaker-Menezes D, Schechter NM & Murphy GF (1995) Serine proteinases are regionally segregated within mast cell granules. Lab Invest 72, 3441.
  • 59
    Schwartz LB & Bradford TR (1986) Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer. J Biol Chem 261, 73727379.
  • 60
    Lindstedt KA, Kokkonen JO & Kovanen PT (1998) Regulation of the activity of secreted human lung mast cell tryptase by mast cell proteoglycans. Biochim Biophys Acta 1425, 617627.
  • 61
    Johnson DA & Barton GJ (1992) Mast cell tryptases: examination of unusual characteristics by multiple sequence alignment and molecular modeling. Protein Sci 1, 370377.
  • 62
    Pereira PJ, Bergner A, Macedo-Ribeiro S, Huber R, Matschiner G, Fritz H, Sommerhoff CP & Bode W (1998) Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Nature 392, 306311.
  • 63
    Alter SC, Kramps JA, Janoff A & Schwartz LB (1990) Interactions of human mast cell tryptase with biological protease inhibitors. Arch Biochem Biophys 276, 2631.
  • 64
    Sommerhoff CP, Bode W, Matschiner G, Bergner A & Fritz H (2000) The human mast cell tryptase tetramer: a fascinating riddle solved by structure. Biochim Biophys Acta 1477, 7589.
  • 65
    Hallgren J, Bäckström S, Estrada S, Thuveson M & Pejler G (2004) Histidines are critical for heparin-dependent activation of mast cell tryptase. J Immunol 173, 18681875.
  • 66
    Selwood T, Wang ZM, McCaslin DR & Schechter NM (2002) Diverse stability and catalytic properties of human tryptase alpha and beta isoforms are mediated by residue differences at the S1 pocket. Biochemistry 41, 33293340.
  • 67
    Huang C, Morales G, Vagi A, Chanasyk K, Ferrazzi M, Burklow C, Qiu WT, Feyfant E, Sali A & Stevens RL (2000) Formation of enzymatically active, homotypic, and heterotypic tetramers of mouse mast cell tryptases. Dependence on a conserved Trp-rich domain on the surface. J Biol Chem 275, 351358.
  • 68
    Hallgren J, Karlson U, Poorafshar M, Hellman L & Pejler G (2000) Mechanism for activation of mouse mast cell tryptase: dependence on heparin and acidic pH for formation of active tetramers of mouse mast cell protease 6. Biochemistry 39, 1306813077.
  • 69
    Schechter NM, Eng GY, Selwood T & McCaslin DR (1995) Structural changes associated with the spontaneous inactivation of the serine proteinase human tryptase. Biochemistry 34, 1062810638.
  • 70
    Selwood T, McCaslin DR & Schechter NM (1998) Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure. Biochemistry 37, 1317413183.
  • 71
    Selwood T, Smolensky H, McCaslin DR & Schechter NM (2005) The interaction of human tryptase-beta with small molecule inhibitors provides new insights into the unusual functional instability and quaternary structure of the protease. Biochemistry 44, 35803590.
  • 72
    Kozik A, Potempa J & Travis J (1998) Spontaneous inactivation of human lung tryptase as probed by size-exclusion chromatography and chemical cross-linking: dissociation of active tetrameric enzyme into inactive monomers is the primary event of the entire process, Biochim Biophys Acta 1385, 139148.
  • 73
    Ren S, Sakai K & Schwartz LB (1998) Regulation of human mast cell beta-tryptase: conversion of inactive monomer to active tetramer at acid pH. J Immunol 160, 45614569.
  • 74
    von Heijne G (1984) How signal sequences maintain cleavage specificity. J Mol Biol 173, 243251.
  • 75
    Reynolds DS, Gurley DS, Austen KF & Serafin WE (1991) Cloning of the cDNA and gene of mouse mast cell protease-6. Transcription by progenitor mast cells and mast cells of the connective tissue subclass. J Biol Chem 266, 38473853.
  • 76
    Sakai K, Long SD, Pettit DA, Cabral GA & Schwartz LB (1996) Expression and purification of recombinant human tryptase in a baculovirus system. Protein Expr Purif 7, 6773.
  • 77
    Wolters PJ, Pham CT, Muilenburg DJ, Ley TJ & Caughey GH (2001) Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem 276, 1855118556.
  • 78
    Savi P, Pflieger AM, Herault JP, Michaux C, Duchaussoy P, Petitou M & Herbert JM (2003) Comparative effects of two synthetic oligosaccharides on platelet activation induced by plasma from HIT patients. J Thromb Haemost 1, 20082013.
  • 79
    Sommerhoff CP, Bode W, Pereira PJ, Stubbs MT, Sturzebecher J, Piechottka GP, Matschiner G & Bergner A (1999) The structure of the human betaII-tryptase tetramer: fo (u) r better or worse. Proc Natl Acad Sci USA 96, 1098410991.
  • 80
    Park PW, Reizes O & Bernfield M (2000) Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 275, 2992329926.
  • 81
    Olson ST & Bjork I (1994) Regulation of thrombin activity by antithrombin and heparin. Semin Thromb Hemost 20, 373409.
  • 82
    Addington AK & Johnson DA (1996) Inactivation of human lung tryptase: evidence for a re-activatable tetrameric intermediate and active monomers. Biochemistry 35, 1351113518.
  • 83
    Lohi J, Harvima I & Keski-Oja J (1992) Pericellular substrates of human mast cell tryptase: 72,000 dalton gelatinase and fibronectin. J Cell Biochem 50, 337349.
  • 84
    Kaminska R, Helisalmi P, Harvima RJ, Naukkarinen A, Horsmanheimo M & Harvima IT (1999) Focal dermal-epidermal separation and fibronectin cleavage in basement membrane by human mast cell tryptase. J Invest Dermatol 113, 567573.
  • 85
    Fajardo I & Pejler G (2003) Formation of active monomers from tetrameric human beta-tryptase. Biochem J 369, 603610.
  • 86
    Fukuoka Y & Schwartz LB (2004) Human beta-tryptase: detection and characterization of the active monomer and prevention of tetramer reconstitution by protease inhibitors. Biochemistry 43, 1075710764.
  • 87
    Jarjour NN, Calhoun WJ, Schwartz LB & Busse WW (1991) Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with increased airway obstruction. Am Rev Respir Dis 144, 8387.
  • 88
    Schwartz LB (1994) Tryptase: a clinical indicator of mast cell-dependent events. Allergy Proc 15, 119123.
  • 89
    Clark JM, Abraham WM, Fishman CE, Forteza R, Ahmed A, Cortes A, Warne RL, Moore WR & Tanaka RD (1995) Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am J Respir Crit Care Med 152, 20762083.
  • 90
    Molinari JF, Scuri M, Moore WR, Clark J, Tanaka R & Abraham WM (1996) Inhaled tryptase causes bronchoconstriction in sheep via histamine release. Am J Respir Crit Care Med 154, 649653.
  • 91
    Sylvin H, Dahlback M, Van Der Ploeg I & Alving K (2002) The tryptase inhibitor APC-366 reduces the acute airway response to allergen in pigs sensitized to Ascaris suum. Clin Exp Allergy 32, 967971.
  • 92
    Berger P, Compton SJ, Molimard M, Walls AF, N'Guyen C, Marthan R & Tunon-De-Lara JM (1999) Mast cell tryptase as a mediator of hyperresponsiveness in human isolated bronchi. Clin Exp Allergy 29, 804812.
  • 93
    Barrios VE, Middleton SC, Kashem MA, Havill AM, Toombs CF & Wright CD (1998) Tryptase mediates hyperresponsiveness in isolated guinea pig bronchi. Life Sci 63, 22952303.
  • 94
    Hallgren J, Estrada S, Karlson U, Alving K & Pejler G (2001) Heparin antagonists are potent inhibitors of mast cell tryptase. Biochemistry 40, 73427349.
  • 95
    Erba F, Fiorucci L, Pascarella S, Menegatti E, Ascenzi P & Ascoli F (2001) Selective inhibition of human mast cell tryptase by gabexate mesylate, an antiproteinase drug. Biochem Pharmacol 61, 271276.
  • 96
    He S & Walls AF (1997) Human mast cell tryptase: a stimulus of microvascular leakage and mast cell activation. Eur J Pharmacol 328, 8997.
  • 97
    He S, Peng Q & Walls AF (1997) Potent induction of a neutrophil and eosinophil-rich infiltrate in vivo by human mast cell tryptase: selective enhancement of eosinophil recruitment by histamine. J Immunol 159, 62166225.
  • 98
    Molinari JF, Moore WR, Clark J, Tanaka R, Butterfield JH & Abraham WM (1995) Role of tryptase in immediate cutaneous responses in allergic sheep. J Appl Physiol 79, 19661970.
  • 99
    Compton SJ, Cairns JA, Holgate ST & Walls AF (1998) The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-1 beta and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J Immunol 161, 19391946.
  • 100
    Cairns JA & Walls AF (1996) Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol 156, 275283.
  • 101
    He S, Gaca MD & Walls AF (1998) A role for tryptase in the activation of human mast cells: modulation of histamine release by tryptase and inhibitors of tryptase. J Pharmacol Exp Ther 286, 289297.
  • 102
    Vliagoftis H, Lacy P, Luy B, Adamko D, Hollenberg M, Befus D & Moqbel R (2004) Mast cell tryptase activates peripheral blood eosinophils to release granule-associated enzymes. Int Arch Allergy Immunol 135, 196204.
  • 103
    Buckley MG, Variend S & Walls AF (2001) Elevated serum concentrations of beta-tryptase, but not alpha-tryptase, in Sudden Infant Death Syndrome (SIDS). An investigation of anaphylactic mechanisms. Clin Exp Allergy 31, 16961704.
  • 104
    Buckley MG, Walters C, Wong WM, Cawley MI, Ren S, Schwartz LB & Walls AF (1997) Mast cell activation in arthritis: detection of alpha- and beta-tryptase, histamine and eosinophil cationic protein in synovial fluid. Clin Sci (Lond) 93, 363370.
  • 105
    Pedotti R, DeVoss JJ, Youssef S, Mitchell D, Wedemeyer J, Madanat R, Garren H, Fontoura P, Tsai M, Galli SJ, et al. (2003) Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination. Proc Natl Acad Sci USA 100, 18671872.
  • 106
    Rozniecki JJ, Hauser SL, Stein M, Lincoln R & Theoharides TC (1995) Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 37, 6366.
  • 107
    Naukkarinen A, Harvima IT, Aalto ML & Horsmanheimo M (1994) Mast cell tryptase and chymase are potential regulators of neurogenic inflammation in psoriatic skin. Int J Dermatol 33, 361366.
  • 108
    Kondo S, Kagami S, Kido H, Strutz F, Muller GA & Kuroda Y (2001) Role of mast cell tryptase in renal interstitial fibrosis. J Am Soc Nephrol 12, 16681676.
  • 109
    Jarvikallio A, Naukkarinen A, Harvima IT, Aalto ML & Horsmanheimo M (1997) Quantitative analysis of tryptase- and chymase-containing mast cells in atopic dermatitis and nummular eczema. Br J Dermatol 136, 871877.
  • 110
    Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH & Hanahan D (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13, 13821397.
  • 111
    Ruoss SJ, Hartmann T & Caughey GH (1991) Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 88, 493499.
  • 112
    Gruber BL, Kew RR, Jelaska A, Marchese MJ, Garlick J, Ren S, Schwartz LB & Korn JH (1997) Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol 158, 23102317.
  • 113
    Frungieri MB, Weidinger S, Meineke V, Kohn FM & Mayerhofer A (2002) Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARgamma: possible relevance to human fibrotic disorders, Proc Natl Acad Sci USA 99, 1507215077.
  • 114
    Akers IA, Parsons M, Hill MR, Hollenberg MD, Sanjar S, Laurent GJ & McAnulty RJ (2000) Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol 278, L193L201.
  • 115
    Abe M, Kurosawa M, Ishikawa O, Miyachi Y & Kido H (1998) Mast cell tryptase stimulates both human dermal fibroblast proliferation and type I collagen production. Clin Exp Allergy 28, 15091517.
  • 116
    Hartmann T, Ruoss SJ, Raymond WW, Seuwen K & Caughey GH (1992) Human tryptase as a potent, cell-specific mitogen: role of signaling pathways in synergistic responses. Am J Physiol 262, L528L534.
  • 117
    Levi-Schaffer F & Piliponsky AM (2003) Tryptase, a novel link between allergic inflammation and fibrosis. Trends Immunol 24, 158161.
  • 118
    Brown JK, Tyler CL, Jones CA, Ruoss SJ, Hartmann T & Caughey GH (1995) Tryptase, the dominant secretory granular protein in human mast cells, is a potent mitogen for cultured dog tracheal smooth muscle cells. Am J Respir Cell Mol Biol. 13, 227236.
  • 119
    Brown JK, Jones CA, Rooney LA, Caughey GH & Hall IP (2002) Tryptase's potent mitogenic effects in human airway smooth muscle cells are via nonproteolytic actions. Am J Physiol Lung Cell Mol Physiol 282, L197L206.
  • 120
    Corvera CU, Dery O, McConalogue K, Bohm SK, Khitin LM, Caughey GH, Payan DG & Bunnett NW (1997) Mast cell tryptase regulates rat colonic myocytes through proteinase- activated receptor 2. J Clin Invest 100, 13831393.
  • 121
    Mallen-St Clair J, Pham CT, Villalta SA, Caughey GH & Wolters PJ (2004) Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest. 113, 628634.
  • 122
    Blair RJ, Meng H, Marchese MJ, Ren S, Schwartz LB, Tonnesen MG & Gruber BL (1997) Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 99, 26912700.
  • 123
    Somasundaram P, Ren G, Nagar H, Kraemer D, Mendoza L, Michael LH, Caughey GH, Entman ML & Frangogiannis NG (2005) Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J Pathol 205, 102111.
  • 124
    Nico B, Marzullo A, Corsi P, Vacca A, Roncali L & Ribatti D (2004) A possible role of tryptase in angiogenesis in the brain of mdx mouse, a model of Duchenne muscular dystrophy. Neuroscience 123, 585588.
  • 125
    Schwartz LB, Bradford TR, Littman BH & Wintroub BU (1985) The fibrinogenolytic activity of purified tryptase from human lung mast cells. J Immunol 135, 27622767.
  • 126
    Imamura T, Dubin A, Moore W, Tanaka R & Travis J (1996) Induction of vascular permeability enhancement by human tryptase: dependence on activation of prekallikrein and direct release of bradykinin from kininogens. Lab Invest 74, 861870.
  • 127
    Lee M, Sommerhoff CP, von Eckardstein A, Zettl F, Fritz H & Kovanen PT (2002) Mast cell tryptase degrades HDL and blocks its function as an acceptor of cellular cholesterol. Arterioscler Thromb Vasc Biol 22, 20862091.
  • 128
    Caughey GH, Leidig F, Viro NF & Nadel JA (1988) Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. J Pharmacol Exp Ther 244, 133137.
  • 129
    Tam EK & Caughey GH (1990) Degradation of airway neuropeptides by human lung tryptase. Am J Respir Cell Mol Biol 3, 2732.
  • 130
    Schwartz LB, Kawahara MS, Hugli TE, Vik D, Fearon DT & Austen KF (1983) Generation of C3a anaphylatoxin from human C3 by human mast cell tryptase. J Immunol 130, 18911895.
  • 131
    Gruber BL, Schwartz LB, Ramamurthy NS, Irani AM & Marchese MJ (1988) Activation of latent rheumatoid synovial collagenase by human mast cell tryptase. J Immunol 140, 39363942.
  • 132
    Gruber BL, Marchese MJ, Suzuki K, Schwartz LB, Okada Y, Nagase H & Ramamurthy NS (1989) Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J Clin Invest 84, 16571662.
  • 133
    Lees M, Taylor DJ & Woolley DE (1994) Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. Eur J Biochem 223, 171177.
  • 134
    Saunders WB, Bayless KJ & Davis GE (2005) MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J Cell Sci 118, 23252340.
  • 135
    Fajardo I & Pejler G (2003) Human mast cell beta-tryptase is a gelatinase. J Immunol 171, 14931499.
  • 136
    Raymond WW, Sommerhoff CP & Caughey GH (2005) Mastin is a gelatinolytic mast cell peptidase resembling a mini-proteasome. Arch Biochem Biophys 435, 311322.
  • 137
    Stack MS & Johnson DA (1994) Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). J Biol Chem 269, 94169419.
  • 138
    Kitamura Y, Taguchi T, Yokoyama M, Inoue M, Yamatodani A, Asano H, Koyama T, Kanamaru A, Hatanaka K, Wershil BK, et al. (1986) Higher susceptibility of mast-cell-deficient W/WV mutant mice to brain thromboembolism and mortality caused by intravenous injection of India ink. Am J Pathol 122, 469480.
  • 139
    Ossovskaya VS & Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84, 579621.
  • 140
    Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A, Hoxie JA, Schechter N, Woolkalis M & Brass LF (1997) Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem. 272, 40434049.
  • 141
    Mirza H, Schmidt VA, Derian CK, Jesty J & Bahou WF (1997) Mitogenic responses mediated through the proteinase-activated receptor-2 are induced by expressed forms of mast cell alpha- or beta-tryptases. Blood 90, 39143922.
  • 142
    Compton SJ, Renaux B, Wijesuriya SJ & Hollenberg MD (2001) Glycosylation and the activation of proteinase-activated receptor 2 (PAR 2) by human mast cell tryptase. Br J Pharmacol. 134, 705718.
  • 143
    Temkin V, Kantor B, Weg V, Hartman ML & Levi-Schaffer F (2002) Tryptase activates the mitogen-activated protein kinase/activator protein-1 pathway in human peripheral blood eosinophils, causing cytokine production and release. J Immunol 169, 26622669.
  • 144
    Yoshii M, Jikuhara A, Mori S, Iwagaki H, Takahashi HK, Nishibori M & Tanaka N (2005) Mast cell tryptase stimulates DLD-1 carcinoma through prostaglandin- and MAP kinase-dependent manners. J Pharmacol Sci 98, 450458.
  • 145
    Weidinger S, Mayerhofer A, Kunz L, Albrecht M, Sbornik M, Wunn E, Hollweck R, Ring J & Kohn FM (2005) Tryptase inhibits motility of human spermatozoa mainly by activation of the mitogen-activated protein kinase pathway. Hum Reprod 20, 456461.
  • 146
    Brown JK, Hollenberg MD & Jones CA (2006) Tryptase activates phosphatidylinositol 3-kinases proteolytically independent from proteinase activated receptor-2 in cultured dog airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290, L259269.
  • 147
    Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE, Smith AJ, Hunter GD, McLean JS, McGarry F, et al. (2003) Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 111, 3541.
  • 148
    Lindner JR, Kahn ML, Coughlin SR, Sambrano GR, Schauble E, Bernstein D, Foy D, Hafezi-Moghadam A & Ley K (2000) Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J Immunol 165, 65046510.
  • 149
    Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P, Bertrand C & Stevens ME (2002) Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 169, 53155321.
  • 150
    Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD, Sommerhoff CP, McLean JS & Ferrell WR (2006) Therapeutic Promise of Par2 Antagonism in Joint Inflammation. J Pharmacol Exp Ther 316, 101724.
  • 151
    Cenac N, Coelho AM, Nguyen C, Compton S, Andrade-Gordon P, MacNaughton WK, Wallace JL, Hollenberg MD, Bunnett NW, Garcia-Villar R, et al. (2002) Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am J Pathol 161, 19031915.
  • 152
    Ui H, Andoh T, Lee JB, Nojima H & Kuraishi Y (2006) Potent pruritogenic action of tryptase mediated by PAR-2 receptor and its involvement in anti-pruritic effect of nafamostat mesilate in mice. Eur J Pharmacol 530, 172178.
  • 153
    Wang J, Zheng H, Hollenberg MD, Wijesuriya SJ, Ou X & Hauer-Jensen M (2003) Up-regulation and activation of proteinase-activated receptor 2 in early and delayed radiation injury in the rat intestine: influence of biological activators of proteinase-activated receptor 2. Radiat Res 160, 524535.
  • 154
    Krishna MT, Chauhan A, Little L, Sampson K, Hawksworth R, Mant T, Djukanovic R, Lee T & Holgate S (2001) Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergen- induced late-phase airway obstruction in asthma. J Allergy Clin Immunol 107, 10391045.
  • 155
    Rice KD, Tanaka RD, Katz BA, Numerof RP & Moore WR (1998) Inhibitors of tryptase for the treatment of mast cell-mediated diseases. Curr Pharm Des 4, 381396.
  • 156
    Costanzo MJ, Yabut SC, Almond HR Jr, Andrade-Gordon P, Corcoran TW, De Garavilla L, Kauffman JA, Abraham WM, Recacha R, Chattopadhyay D, et al. (2003) Potent, small-molecule inhibitors of human mast cell tryptase. Antiasthmatic action of a dipeptide-based transition-state analogue containing a benzothiazole ketone. J Med Chem 46, 38653876.
  • 157
    Sendo T, Itoh Y, Goromaru T, Sumimura T, Saito M, Aki K, Yano T & Oishi R (2003) A potent tryptase inhibitor nafamostat mesilate dramatically suppressed pulmonary dysfunction induced in rats by a radiographic contrast medium. Br J Pharmacol 138, 959967.
  • 158
    Burgess LE, Newhouse BJ, Ibrahim P, Rizzi J, Kashem MA, Hartman A, Brandhuber BJ, Wright CD, Thomson DS, Vigers GP et al. (1999) Potent selective nonpeptidic inhibitors of human lung tryptase. Proc Natl Acad Sci USA 96, 83488352.
  • 159
    Wright CD, Havill AM, Middleton SC, Kashem MA, Dripps DJ, Abraham WM, Thomson DS & Burgess LE (1999) Inhibition of allergen-induced pulmonary responses by the selective tryptase inhibitor 1,5-bis-{4-[(3-carbamimidoyl-benzenesulfonylamino)-methyl]-phenoxy}-pentane (AMG-126737). Biochem Pharmacol 58, 19891996.
  • 160
    Oh SW, Pae CI, Lee DK, Jones F, Chiang GK, Kim HO, Moon SH, Cao B, Ogbu C, Jeong KW, et al. (2002) Tryptase inhibition blocks airway inflammation in a mouse asthma model. J Immunol 168, 19922000.
  • 161
    Rice KD, Wang VR, Gangloff AR, Kuo EY, Dener JM, Newcomb WS, Young WB, Putnam D, Cregar L, Wong M, et al. (2000) Dibasic inhibitors of human mast cell tryptase. Part 2: structure–activity relationships and requirements for potent activity. Bioorg Med Chem Lett 10, 23612366.
  • 162
    Dener JM, Rice KD, Newcomb WS, Wang VR, Young WB, Gangloff AR, Kuo EY, Cregar L, Putnam D & Wong M (2001) Dibasic inhibitors of human mast cell tryptase. Part 3: identification of a series of potent and selective inhibitors containing the benzamidine functionality. Bioorg Med Chem Lett 11, 16291633.
  • 163
    Rice KD, Gangloff AR, Kuo EY, Dener JM, Wang VR, Lum R, Newcomb WS, Havel C, Putnam D, Cregar L, et al. (2000) Dibasic inhibitors of human mast cell tryptase. Part 1: synthesis and optimization of a novel class of inhibitors. Bioorg Med Chem Lett 10, 23572360.
  • 164
    Schaschke N, Dominik A, Matschiner G & Sommerhoff CP (2002) Bivalent inhibition of beta-tryptase: distance scan of neighboring subunits by dibasic inhibitors. Bioorg Med Chem Lett 12, 985988.
  • 165
    Schaschke N, Matschiner G, Zettl F, Marquardt U, Bergner A, Bode W, Sommerhoff CP & Moroder L (2001) Bivalent inhibition of human beta-tryptase. Chem Biol 8, 313327.
  • 166
    Schaschke N, Gabrijelcic-Geiger D, Dominik A & Sommerhoff CP (2005) Affinity chromatography of tryptases: design, synthesis and characterization of a novel matrix-bound bivalent inhibitor. Chembiochem 6, 95103.
  • 167
    Tremaine WJ, Brzezinski A, Katz JA, Wolf DC, Fleming TJ, Mordenti J, Strenkoski-Nix LC & Kurth MC (2002) Treatment of mildly to moderately active ulcerative colitis with a tryptase inhibitor (APC 2059): an open-label pilot study. Aliment Pharmacol Ther 16, 407413.
  • 168
    Sutton JC, Bolton SA, Hartl KS, Huang MH, Jacobs G, Meng W, Ogletree ML, Pi Z, Schumacher WA, Seiler SM, et al. (2002) Synthesis and SAR of 4-carboxy-2-azetidinone mechanism-based tryptase inhibitors. Bioorg Med Chem Lett 12, 32293233.
  • 169
    Slusarchyk WA, Bolton SA, Hartl KS, Huang MH, Jacobs G, Meng W, Ogletree ML, Pi Z, Schumacher WA, Seiler SM, et al. (2002) Synthesis of potent and highly selective inhibitors of human tryptase. Bioorg Med Chem Lett 12, 32353238.
  • 170
    Bisacchi GS, Slusarchyk WA, Bolton SA, Hartl KS, Jacobs G, Mathur A, Meng W, Ogletree ML, Pi Z, Sutton JC, et al. (2004) Synthesis of potent and highly selective nonguanidine azetidinone inhibitors of human tryptase. Bioorg Med Chem Lett 14, 22272231.
  • 171
    Sommerhoff CP, Sollner C, Mentele R, Piechottka GP, Auerswald EA & Fritz H (1994) A Kazal-type inhibitor of human mast cell tryptase: isolation from the medical leech Hirudo medicinalis, characterization, and sequence analysis. Biol Chem Hoppe Seyler 375, 685694.
  • 172
    Wright CD, Havill AM, Middleton SC, Kashem MA, Lee PA, Dripps DJ, O'Riordan TG, Bevilacqua MP & Abraham WM (1999) Secretory leukocyte protease inhibitor prevents allergen-induced pulmonary responses in animal models of asthma. J Pharmacol Exp Ther 289, 10071014.
  • 173
    Strik MC, Wolbink A, Wouters D, Bladergroen BA, Verlaan AR, van Houdt IS, Hijlkema S, Hack CE & Kummer JA (2004) Intracellular serpin SERPINB6 (PI6) is abundantly expressed by human mast cells and forms complexes with beta-tryptase monomers. Blood 103, 27102717.
  • 174
    Elrod KC, Moore WR, Abraham WM & Tanaka RD (1997) Lactoferrin, a potent tryptase inhibitor, abolishes late-phase airway responses in allergic sheep. Am J Respir Crit Care Med 156, 375381.
  • 175
    He S, McEuen AR, Blewett SA, Li P, Buckley MG, Leufkens P & Walls AF (2003) The inhibition of mast cell activation by neutrophil lactoferrin: uptake by mast cells and interaction with tryptase, chymase and cathepsin G. Biochem Pharmacol 65, 10071015.
  • 176
    Cregar L, Elrod KC, Putnam D & Moore WR (1999) Neutrophil myeloperoxidase is a potent and selective inhibitor of mast cell tryptase. Arch Biochem Biophys 366, 125130.
  • 177
    Lundequist A, Juliano MA, Juliano L & Pejler G (2003) Polycationic peptides as inhibitors of mast cell serine proteases. Biochem Pharmacol 65, 11711180.
  • 178
    Buckley MG, Gallagher PJ & Walls AF (1998) Mast cell subpopulations in the synovial tissue of patients with osteoarthritis: selective increase in numbers of tryptase-positive, chymase-negative mast cells. J Pathol 186, 6774.
  • 179
    Pedotti R, De Voss JJ, Steinman L & Galli SJ (2003) Involvement of both ‘allergic’ and ‘autoimmune’ mechanisms in EAE, MS and other autoimmune diseases. Trends Immunol 24, 479484.
  • 180
    Namazi MR (2005) Possible molecular mechanisms to account for the involvement of tryptase in the pathogenesis of psoriasis. Autoimmunity 38, 449452.
  • 181
    Kielty CM, Lees M, Shuttleworth CA & Woolley D (1993) Catabolism of intact type VI collagen microfibrils: susceptibility to degradation by serine proteinases. Biochem Biophys Res Commun 191, 12301236.
  • 182
    Guyot N, Zani ML, Berger P, Dallet-Choisy S & Moreau T (2005) Proteolytic susceptibility of the serine protease inhibitor trappin-2 (pre-elafin): evidence for tryptase-mediated generation of elafin. Biol Chem 386, 391399.
  • 183
    Katz BA, Clark JM, Finer-Moore JS, Jenkins TE, Johnson CR, Ross MJ, Luong C, Moore WR & Stroud RM (1998) Design of potent selective zinc-mediated serine protease inhibitors. Nature 391, 608612.
  • 184
    Caughey GH, Raymond WW, Bacci E, Lombardy RJ & Tidwell RR (1993) Bis-(5-amidino-2-benzimidazolyl)methane and related amidines are potent, reversible inhibitors of mast cell tryptases. J Pharmacol Exp Ther 264, 676682.
  • 185
    Murakami Y, Takei M, Shindo K, Kitazume C, Tanaka J, Higa T & Fukamachi H (2002) Cyclotheonamide E4 and E5, new potent tryptase inhibitors from an Ircinia species of sponge. J Nat Prod 65, 259261.