SEARCH

SEARCH BY CITATION

References

  • 1
    Saha BC & Zeikus JG (1989) Microbial glucoamylases: biochemical and biotechnological features. Starch 41, 5764.
  • 2
    Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280, 309316.
  • 3
    Aleshin AE, Golubev A, Firsov LM & Honzatko RB (1992) Crystal structure of glucoamylase from Aspergillus awamori var. X100–2.2 Å resolution. J Biol Chem 267, 1929119298.
  • 4
    Aleshin AE, Hoffman C, Firsov LM & Honzatko RB (1994a) Crystal structure of glucoamylase from Aspergillus awamori var. X100–2.2 Å resolution. J Mol Biol 238, 575591.
  • 5
    Harris EMS, Aleshin AE, Firsov LM & Honzatko RB (1993) Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100–2.4 Å resolution. Biochemistry 32, 16181626.
  • 6
    Aleshin AE, Firsov LM & Honzatko RB (1994b) Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100–2.4 Å resolution. J Biol Chem 269, 1563115639.
  • 7
    Stoffer B, Aleshin AE, Firsov LM, Svensson B & Honzatko RB (1995) Refined structure for the complex of d-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100–2.2 Å resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase. FEBS Lett 358, 5761.
  • 8
    Aleshin AE, Stoffer B, Firsov LM, Svensson B & Honzatko RB (1996) Crystallographic complexes of glucoamylase with maltooligosaccharide analogs: relationship of stereochemical distortions at the nonreducing end to the catalytic mechanism. Biochemistry 35, 83198328.
  • 9
    Davies GJ, Wilson KS & Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321, 557559.
  • 10
    Sorimachi K, Jacks AJ, Le Gal-Coëffet MF, Williamson G, Archer DB & Williamson MP (1996) Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol 259, 970987.
  • 11
    Sorimachi K, LeGal-Coëffet MF, Williamson G, Archer DB & Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5, 547661.
  • 12
    Aleshin AE, Feng PH, Honzatko RB & Reilly PJ (2003) Crystal structure and evolution of a prokaryotic glucoamylase. J Mol Biol 327, 6173.
  • 13
    Itoh T, Ohtsuki L, Yamashita I & Fukui S (1987) Nucleotide sequence of the glucoamylase gene GLU1 in the yeast Saccharomycopsis fibuligera. J Bacteriol 169, 41714176.
  • 14
    Hostinová E, Solovicová A, Dvorský R & Gašperík J (2003) Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Arch Biochem Biophys 411, 189195.
  • 15
    Solovicová A, Christensen T, Hostinová E, Gašperík J, Ševčík J & Svensson B (1999) Structure–function relationships in glucoamylases encoded by variant Saccharomycopsis fibuligera genes. Eur J Biochem 264, 756764.
  • 16
    Ševčík J, Solovicová A, Hostinová E, Gašperík J, Wilson KS & Dauter Z (1998) Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7 Å resolution. Acta Cryst D54, 854866.
  • 17
    Lo Conte L, Ailey B, Hubbard TJ, Brenner SE, Murzin AG & Chothia C (2000) SCOP: a structural classification of proteins database. Nucleic Acids Res 28, 257259.
  • 18
    Read RJ (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst A42, 140149.
  • 19
    Cruickshank DWJ (1996) Macromolecular Refinement. In Proceedings of the CCP4 Study Weekend (EJDodson, MMoore, ARalph & SBailey, eds), pp. 1123. SERC Daresbury Laboratory, Warrington, UK.
  • 20
    Wilson AJC (1942) Determination of absolute from relative X-ray data intensities. Nature 150, 151152.
  • 21
    Ramakrishnan C & Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. Biophys J 5, 909933.
  • 22
    Morris AL, Macarthur MW, Hutchinson EG & Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12, 345364.
  • 23
    Harding MM (2002) Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Cryst D58, 872874.
  • 24
    McCarter JD & Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4, 885892.
  • 25
    Sinnott ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90, 11711202.
  • 26
    Konstantinidis A & Sinnot ML (1991) The interaction of 1-fluoro-d-glucopyranosyl fluoride with glucosidases. Biochem J 279, 587593.
  • 27
    Tanaka Y, Tao W, Blanchard JS & Hehre EJ (1994) Transition-state structures for the hydrolysis of alpha-d-glucopyranosyl fluoride by retaining and inverting reactions of glycosylases. J Biol Chem 269, 3230632312.
  • 28
    Sierks MR, Ford C, Reilly PJ & Svensson B (1990) Catalytic mechanism of fungal glucoamylase as defined by mutagenesis of Asp176, Glu179 and Glu180 in the enzyme from Aspergillus awamori. Protein Eng 3, 193198.
  • 29
    Svensson B, Clarke AJ, Svendsen I & Moller H (1990) Identification of carboxylic acid residues in glucoamylase G2 from Aspergillus niger that participate in catalysis and substrate binding. Eur J Biochem 188, 2938.
  • 30
    Davies GJ & Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3, 853859.
  • 31
    White A & Rose DR (1997) Mechanism of catalysis by retaining beta-glycosyl hydrolases. Curr Opin Struct Biol 7, 645651.
  • 32
    Robert X, Haser R, Svensson B & Aghajari N (2002) Comparison of crystal structure of barley alpha-amylase 1 and 2: implications for isozyme differences in stability and activity. Biologia (Bratislava) 57 (Suppl. 11), 5970.
  • 33
    Robert X, Haser R, Gottshalk TE, Ratajczak F, Driguez H, Svensson B & Aghajari N (2003) The structure of barley alpha-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure 11, 973984.
  • 34
    Robert X, Haser R, Mori H, Svensson B & Aghajari N (2005) Oligosaccharide binding to barley α-amylase 1. J Biol Chem 280, 3296832978.
  • 35
    Przylas I, Terada Y, Fujii K, Takaha T, Saenger W & Sträter N (2000) X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus: implications for the synthesis of large cyclic glucans. Eur J Biochem 267, 69036913.
  • 36
    Sträter N, Przylas I, Saenger W, Terada Y, Fuji K & Takaha T (2002) Structural basis of the synthesis of large cycloamyloses by amylomaltase. Biologia (Bratislava) 57 (Suppl. 11), 9399.
  • 37
    Gašperík J, Hostinová E & Ševčík J (2005) Acarbose binding at the surface of Saccharomycopsis fibuligera glucoamylase suggests the presence of a raw starch-binding site. Biologia (Bratislava) 60 (Suppl. 16), 177180.
  • 38
    Gašperík J & Hostinová E (1993) Glucoamylases encoded by variant Saccharomycopsis fibuligera genes: structure and properties. Curr Microbiol 27, 1114.
  • 39
    Solovicová A, Gašperík J & Hostinová E (1996) High-yield production of Saccharomycopsis fibuligera glucoamylase in Escherichia coli, refolding, and comparison of the nonglycosylated and glycosylated enzyme forms. Biochem Biophys Res Com 224, 790795.
  • 40
    Solovicová A, Gašperík J, Ševčík J & Hostinová E (1997) Crystallization and preliminary X-ray analysis of the Saccharomycopsis fibuligera glucoamylase expressed from the GLU1 gene in Escherichia coli. Acta Cryst D53, 782783.
  • 41
    Otwinowski Z & Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307326.
  • 42
    Collaborative Computational Project, Number 4 (1994) The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst. D50, 760763.
  • 43
    Vagin A & Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Cryst 30, 10221025.
  • 44
    Murshudov GN, Vagin A & Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D53, 240255.
  • 45
    Brünger AT (1993) Assessment of phase accuracy by cross validation: the free R value: methods and applications. Acta Cryst D49, 2436.
  • 46
    Lamzin VS & Wilson KS (1997) Automated refinement for protein crystallography. Methods Enzymol 277, 269305.
  • 47
    Jones TA, Zou JY, Cowan SW & Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst A47, 110119.
  • 48
    McRee DE (1993) Practical Protein Crystallography. Academic Press, Inc., San Diego, New York, Boston, London, Sydney, Tokyo, Toronto.
  • 49
    Sali A, Potterton L, Yuan F, van Vlijmen H & Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins: Struct Funct Genet 23, 318326.
  • 50
    Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Cryst 24, 946950.
  • 51
    Esnouf RM (1999) Further additions to Molscript, Version 1.4. including reading and contouring of electron-density maps. Acta Cryst D55, 938940.