SEARCH

SEARCH BY CITATION

References

  • 1
    Weisburg WG, Giovannoni SJ & Woese CR (1989) The Deinococcus–Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst Appl Microbiol 11, 128134.
  • 2
    Hensel R, Demharter W, Kandler O, Kroppenstedt RM & Stackebrandt E (1986) Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int J Syst Bacteriol 36, 444453.
  • 3
    Hidaka Y, Hasegawa M, Nakahara T & Hoshino T (1994) The entire population of Thermus thermophilus cells is always competent at any growth phase. Biosci Biotechnol Biochem 58, 13381339.
  • 4
    Koyama Y, Hoshino T, Tomizuka N & Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166, 338340.
  • 5
    Omelchenko MV, Wolf YI, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Daly MJ, Koonin EV & Makarova KS (2005) Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 5, 5779.
  • 6
    Friedrich A, Hartsch T & Averhoff B (2001) Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 67, 31403148.
  • 7
    Friedrich A, Prust C, Hartsch T, Henne A & Averhoff B (2002) Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 68, 745755.
  • 8
    Friedrich A, Rumszauer J, Henne A & Averhoff B (2003) Pilin-like proteins in the extremely thermophilic bacterium Thermus thermophilus HB27: implication in competence for natural transformation and links to type IV pilus biogenesis. Appl Environ Microbiol 69, 36953700.
  • 9
    Genin S & Boucher CA (1994) A superfamily of proteins involved in different secretion pathways in gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet 243, 112118.
  • 10
    Bitter W (2003) Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch Microbiol 179, 307314.
  • 11
    Collins RF, Ford RC, Kitmitto A, Olsen RO, Tonjum T & Derrick JP (2003) Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J Bacteriol 185, 26112617.
  • 12
    Collins RF, Frye SA, Kitmitto A, Ford RC, Tonjum T & Derrick JP (2004) Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 Å resolution. J Biol Chem 279, 3975039756.
  • 13
    Stimson E, Virji M, Barker S, Panico M, Blench I, Saunders J, Payne G, Moxon ER, Dell A & Morris HR (1996) Discovery of a novel protein modification: alpha-glycerophosphate is a substituent of meningococcal pilin. Biochem J 316, 2933.
  • 14
    Weiser JN, Goldberg JB, Pan N, Wilson L & Virji M (1998) The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infect Immun 66, 42634267.
  • 15
    Stimson E, Virji M, Makepeace K, Dell A, Morris HR, Payne G, Saunders JR, Jennings MP, Barker S, Panico M et al. (1995) Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol Microbiol 17, 12011214.
  • 16
    Moens S & Vanderleyden J (1997) Glycoproteins in prokaryotes. Arch Microbiol 168, 169175.
  • 17
    Virji M (1997) Post-translational modifications of meningococcal pili. Identification of common substituents: glycans and alpha-glycerophosphate. Gene 192, 141147.
  • 18
    Porstendörfer D, Gohl O, Mayer F & Averhoff B (2000) ComP, a pilin-like protein essential for natural competence in Acinetobacter sp. strain BD413: regulation, modification, and cellular localization. J Bacteriol 182, 36733680.
  • 19
    Power PM & Jennings MP (2003) The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett 218, 211222.
  • 20
    Dieckelmann M, Roddam LF & Jennings MP (2003) Purification of post-translationally modified proteins from bacteria: homologous expression and purification of histidine-tagged pilin from Neisseria meningitidis. Protein Expr Purif 30, 6977.
  • 21
    Bork P, Sander C & Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89, 72907294.
  • 22
    Löwe J, van den Ent F & Amos LA (2004) Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct 33, 177198.
  • 23
    Jensen SO, Thompson LS & Harry EJ (2005) Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-ring assembly. J Bacteriol 187, 65366544.
  • 24
    Defeu Soufo HJ & Graumann PL (2004) Dynamic movement of actin-like proteins within bacterial cells. EMBO Rep 5, 789794.
  • 25
    Martin PR, Watson AA, McCaul TF & Mattick JS (1995) Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 16, 497508.
  • 26
    Ropp PA & Nicholas RA (1997) Cloning and characterization of the ponA gene encoding penicillin-binding protein 1 from Neisseria gonorrhoeae and Neisseria meningitidis. J Bacteriol 179, 27832787.
  • 27
    Drake SL, Sandstedt SA & Koomey M (1997) PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Mol Microbiol 23, 657668.
  • 28
    Wall D, Kolenbrander PE & Kaiser D (1999) The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J Bacteriol 181, 2433.
  • 29
    Karlyshev AV & MacIntyre S (1995) Cloning and study of the genetic organization of the exe gene cluster of Aeromonas salmonicida. Gene 158, 7782.
  • 30
    Martin PR, Hobbs M, Free PD, Jeske Y & Mattick JS (1993) Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 9, 857868.
  • 31
    Drake SL & Koomey M (1995) The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol Microbiol 18, 975986.
  • 32
    Guilvout I, Hardie KR, Sauvonnet N & Pugsley AP (1999) Genetic dissection of the outer membrane secretin PulD: are there distinct domains for multimerization and secretion specificity?. J Bacteriol 181, 72127220.
  • 33
    Collins RF, Davidsen L, Derrick JP, Ford RC & Tonjum T (2001) Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol 183, 38253832.
  • 34
    Bitter W, Koster M, Latijnhouwers M, de Cock H & Tommassen J (1998) Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 27, 209219.
  • 35
    Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York.
  • 36
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • 37
    Towbin H, Staehelin T & Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 43504354.
  • 38
    Filip C, Fletcher G, Wulff JL & Earhart CF (1973) Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 115, 717722.
  • 39
    Edge AS, Faltynek CR, Hof L, Reichert LE Jr & Weber P (1981) Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem 118, 131137.
  • 40
    Hayat MA (1989) Negative staining. In Principles and Techniques of Electron Microscopy. Biological Applications (HayatMA, ed.), pp. 328351. Macmillan Press, London.