• 1
    Terra WR & Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol 109B, 162.
  • 2
    Terra WR & Ferreira C (2005) Biochemistry of digestion. In Comprehensive Molecular Insect Science (GilbertLI, Iatrou K & Gill SS, eds), Vol. 4, pp. 171224. Elsevier, Oxford.
  • 3
    Knight PJ, Knowles BH & Ellar DJ (1995) Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA (c) toxin. J Biol Chem 270, 1776517770.
  • 4
    Valaitis AP, Lee MK, Rajamohan F & Dean DH (1995) Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA (c) delta-endotoxin of Bacillus thuringiensis. Insect Biochem Mol Biol 25, 11431151.
  • 5
    Denolf P, Hendrickx K, Vandamme J, Jansens S, Peferoen M, Degheele D & VanRie J (1997) Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Eur J Biochem 248, 748761.
  • 6
    Yaoi K, Nakanishi K, Kadotani T, Imamura M, Koizumi N, Iwahana H & Sato R (1999) cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxin binding 120 kDa aminopeptidase N from Bombyx mori. Biochim Biophys Acta 1444, 131137.
  • 7
    Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR & Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62, 775806.
  • 8
    Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT & Holmes KV (1992) Human aminopeptidase N is a receptor for human Coronavirus 229E. Nature 357 (6377), 420422.
  • 9
    Gill SS, Cowles EA & Francis V (1995) Identification, isolation and cloning of a Bacillus thuringiensis Cry1Ac toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem 270, 2727727282.
  • 10
    Hua G, Tsukamoto K & Ikezawa H (1998) Cloning and sequence analysis of the aminopeptidase N isozyme (APN2) from Bombyx mori midgut. Comp Biochem Physiol 121B, 213222.
  • 11
    Oltean DI, Pullikuth AK, Lee HK & Gill SS (1999) Partial purification and characterization of Bacillus thuringiensis Cry1A toxin receptor A from Heliothis virescens and cloning of the corresponding cDNA. Appl Environ Microbiol 65, 47604766.
  • 12
    Chang WX, Gahan LJ, Tabashnik BE & Heckel DG (1999) A new aminopeptidase from diamondback moth provides evidence for a gene duplication event in Lepidoptera. Insect Mol Biol 8, 171177.
  • 13
    Simpson RM & Newcomb RD (2000) Binding of Bacillus thuringiensis delta-endotoxins Cry1Ac and Cry1Ba to a 120-kDa aminopeptidase-N of Epiphyas postvittana purified from both brush border membrane vesicles and baculovirus-infected Sf9 cells. Insect Biochem Mol Biol 30, 10691078.
  • 14
    Zhu YC, Kramer KJ, Oppert B & Dowdy AK (2000) cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins. Insect Biochem Mol Biol 30, 215224.
  • 15
    Emmerling M, Chandler D & Sandeman M (2001) Molecular cloning of three cDNAs encoding aminopeptidases from the midgut of Helicoverpa punctigera, the Australian native budworm. Insect Biochem Mol Biol 31, 899907.
  • 16
    Agrawal N, Malhotra P & Bhatnagar RK (2002) Interaction of gene-cloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C. Appl Environ Microbiol 68, 45834592.
  • 17
    Nakanishi K, Yaoi K, Nagino Y, Hara H, Kitami M, Atsumi S, Muira N & Sato R (2002) Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella: their classification and the factors that determine their binding specificity of Bacillus thuringiensis Cry1Ac toxin. FEBS Lett 519, 215220.
  • 18
    Banks DJ, Hua G & Adang MJ (2003) Cloning of a Heliothis virescens 110 kDa aminopeptidase N and expression in Drosophila S2 cells. Insect Biochem Mol Biol 33, 499508.
  • 19
    Rajagopal R, Agrawal N, Selvapandiyan A, Sivakumar S, Ahmad S & Bhatnagar RK (2003) Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins. Biochem J 370, 971978.
  • 20
    Wang P, Zhang X & Zhang J (2005) Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 35, 611620.
  • 21
    Rawlings ND & Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248, 183228.
  • 22
    Cristofoletti PT & Terra WR (1999) Specificity, anchoring, and subsites in the active center of a microvillar aminopeptidase purified from Tenebrio molitor (Coleoptera) midgut cells. Insect Biochem Mol Biol 29, 807819.
  • 23
    Cristofoletti PT & Terra WR (2000) The role of amino acid residues in the active site of a midgut microvillar aminopeptidase from the beetle Tenebrio molitor. Biochim Biophys Acta 1479, 185195.
  • 24
    Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA & Galle RF (2000) The genome sequence of Drosophila melanogaster. Science 287, 21852195.
  • 25
    Ferreira C & Terra WR (1984) Soluble aminopeptidases from cytosol and luminal contents of Rhynchosciara americana midgut caeca. Properties and phenanthroline inhibition. Insect Biochem 14, 145150.
  • 26
    Ferreira C & Terra WR (1986) Substrate specificity and binding loci for inhibitors in an aminopeptidase purified from the plasma membrane of midgut cells of an insect (Rhynchosciara americana). Arch Biochem Biophys 244, 478485.
  • 27
    Silva CP, Ribeiro AF & Terra WR (1996) Enzyme markers and isolation of the microvillar and perimicrovillar membranes of Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) midgut cells. Insect Biochem Mol Biol 26, 10111018.
  • 28
    Cristofoletti PT, Ribeiro AF, Deraison C, Rahbé Y & Terra WR (2003) Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. J Insect Physiol 49, 1124.
  • 29
    Sauvion N, Nardon C, Febvay G, Gatehouse AM & Rahbé Y (2004) Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. J Insect Physiol 50, 11371150.
  • 30
    Wilkes SH & Prescott J (1985) The slow, tight binding of bestatin and amastatin to aminopeptidases. J Biol Chem 25, 1315413162.
  • 31
    Bendtsen JD, Nielsen H, von Heijne G & Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783795.
  • 32
    Kronegg J & Buloz D (1999) Detection/prediction of GPI cleavage site (GPI-anchor) in a protein (DGPI). .
  • 33
    Julenius K, Molgaard A, Gupta R & Brunak S (2005) Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15, 153164.
  • 34
    Norén O, Sjostrom H, Danielsen EM, Cowell GM & Skovbjerg H (1986) The enzymes of the enterocyte plasma membrane. In Molecular and Cellular Basis of Digestion (DesnuelleP, SjostromH & NorénO, eds). Elsevier, Amsterdam.
  • 35
    Ward CW (1975a) Aminopeptidases in webbing clothes moth larvae. Properties and specificities of enzymes of highest electrophoretic mobility. Aust J Biol Sci 28, 447455.
  • 36
    Ward CW (1975b) Aminopeptidases in webbing clothes moth larvae. Properties and specificities of the enzymes of intermediate electrophoretic mobility. Biochim Biophys Acta 410, 361369.
  • 37
    Baker JE & Woo SM (1981) Properties and specificities of a digestive aminopeptidase from larvae of Attagenus megatoma (Coleoptera: Dermestidae). Comp Biochem Physiol 69B, 189193.
  • 38
    Lee MJ & Anstee JH (1995) Characterization of midgut exopeptidase activity from larval Spodoptera littoralis. Insect Biochem Mol Biol 25, 6371.
  • 39
    Schechter I & Berger A (1967) On the size of the active site in proteases. Biochem Biophys Res Commun 27, 157162.
  • 40
    Rich DH, Moon BJ & Harbeson S (1984) Inhibition of aminopeptidases by amastatin and bestatin derivatives. Effect of inhibitor structure on slow-binding processes. J Med Chem 27, 417422.
  • 41
    Deraison C, Darboux I, Duportets L, Gorojankina T, Rahbé Y & Jouanin L (2004) Cloning and characterization of a gut-specific cathepsin L from the aphid Aphis gossypii. Insect Mol Biol 13, 165177.
  • 42
    Parenti P, Morandi P, Mcgivan JD, Consonnic P, Leonardi G & Giordana B (1997) Properties of the aminopeptidase N from the silkworm midgut (Bombyx mori). Insect Biochem Mol Biol 27, 397403.
  • 43
    Gatehouse AMR & Gatehouse JA (1996) Effects of lectins on insects. In Effects of Antinutrients on the Nutritional Value of Legume Diets:9th World Conference of Food Science and Technology, COST 98 Action, Budapest (BardoczS, GelencserE & PusztaiA, eds), pp. 1421. COST publications, Brussels.
  • 44
    Du JP, Foissac X, Carss A, Gatehouse AMR & Gatehouse JA (2000) Ferritin acts as the most abundant binding protein for snowdrop lectin in the midgut of rice brown planthoppers (Nilaparvata lugens). Insect Biochem Mol Biol 30, 297305.
  • 45
    Sabater-Munoz B, Legeai F, Rispe C, Bonhomme J, Dearden P, Dossat C, Duclert A, Gauthier JP, Ducray DG, Hunter W, et al. (2006) Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genome Biol 7, R21.
  • 46
    Rahbé Y & Febvay G (1993) Protein toxicity to aphids: an in vitro test on Acyrthosiphon pisum. Entomologia Expis Applicata 67, 149160.
  • 47
    Sauvion N (1995) Effects and mechanisms of toxicity of two lectins of the glucose-mannose group towards the pea aphid, Acyrthosiphon pisum (Harris). Potential use of plant lectins for creating transgenic plant resistant to aphids. PhD Thesis, INSA-Lyon: .
  • 48
    Dreux P (1963) Modification de la solution de Robert Levy et Yeager permettant le fonctionnement du vaisseau dorsal de la chenille de Galleria mellonella en millieu artificiel. C R Seances Soc Biol Fil 157, 10001005.
  • 49
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.
  • 50
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ & Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150, 7685.
  • 51
    Morton RE & Evans TA (1992) Modification of the bicinchoninic acid protein assay to eliminate lipid interference in determining lipoprotein protein content. Anal Biochem 204, 332334.
  • 52
    Hopsu UK, Mäkinen KK & Glenner GG (1966) Purification of a mammalian peptidase selective for N-terminal arginine and lysine residues: aminopeptidase B. Arch Biochem Biophysics 114, 557566.
  • 53
    Erlanger BF, Kokowsky N & Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophysics 95, 271278.
  • 54
    Nicholson JA & Kim YS (1975) An one-step 1-amino acid oxidase assay for intestinal peptide hydrolase activity. Anal Biochem 63, 110117.
  • 55
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680685.
  • 56
    Blum H, Beier H & Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide. Electrophoresis 8, 9399.
  • 57
    Terra WR, Ferreira C & De Bianchi AG (1978) Physical properties and Tris inhibition of an insect trehalase and a thermodynamic approach to the nature of its active site. Biochim Biophys Acta 524, 131141.
  • 58
    Terra WR & Ferreira C (1983) Further evidence that enzymes involved in the final stages of digestion by Rhynchosciara americana do not enter the endoperitrophic space. Insect Biochem 13, 143150.
  • 59
    Martin RG & Ames BN (1961) A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem 236, 13721379.
  • 60
    Towbin H, Staehelin T & Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 43504354.
  • 61
    Segel IH (1975) Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. John Wiley & Sons, Inc, New York, NY.
  • 62
    Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262, 1003510038.
  • 63
    Chomczynski P & Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium triocyanate–phenol–chloroform extraction. Anal Biochem 162, 156159.
  • 64
    Garner KJ, Hiremath S, Lehtoma K & Valaitis AP (1999) Cloning and complete sequence characterization of two gypsy moth aminopeptidase-N cDNAs, including the receptor for Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol 29, 527535.