SEARCH

SEARCH BY CITATION

References

  • 1
    Rein R (1978) Studies of biomolecular interactions: principles of nucleic acid structure and function from the point of view of constituent interactions. In Intermolecular Interactions: from Diatomics to Biopolymers (PullmanB, ed.), pp. 307362. John Wiley & Sons, New York, NY.
  • 2
    McGaughey GB, Gagne M & Rappe K (1998) Pi-stacking interactions. Alive and well in proteins. J Biol Chem 272, 1545815463.
  • 3
    Ma B, Elkayam T, Wolfson H & Nussinov R (2003) Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci USA 100, 57725777.
  • 4
    Gazit E (2002) A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 16, 7783.
  • 5
    Azriel R & Gazit E (2001) Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 276, 3415634161.
  • 6
    Naito A, Kamihira M, Inoue R & Saito H (2004) Structural diversity of amyloid fibril formed in human calcitonin as revealed by site-directed 13C solid-state NMR spectroscopy. Magn Reson Chem 42, 247257.
  • 7
    Makin OS, Atkins E, Sikorski P, Johansson J & Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 102, 315320.
  • 8
    Inouye H, Sharma D, Goux WJ & Kirschner DA (2006) Structure of core domain of fibril-forming PHF/tau fragments. Biophys J 90, 17741789.
  • 9
    Haspel N, Zanuy D, Ma B, Wolfson H & Nussinov R (2005) Side chain interactions determine the amyloid organization: a single layer beta-sheet molecular structure of the calcitonin peptide segment 15–19. J Mol Biol 345, 12131227.
  • 10
    Wu C, Lei H & Duan Y (2005) The role of Phe in the formation of well-ordered oligomers of amyloidogenic hexapeptide (NFGAIL) observed in molecular dynamics simulations with explicit solvent. Biophys J 88, 28972906.
  • 11
    Colombo G, Daidone I, Gazit E, Amadei A & Di Nola A (2005) Molecular dynamics simulation of the aggregation of the core-recognition motif of the islet amyloid polypeptide in explicit water. Proteins 59, 519527.
  • 12
    Fantini J (2003) How sphingolipids bind and shape proteins: molecular basis of lipid–protein interactions in lipid shells, rafts and related biomembrane domains. Cell Mol Life Sci 60, 10271032.
  • 13
    Nishio M, Umezawa Y, Hirota M & Takeuchi Y (1995) The CH/Pi interaction: significance in molecular recognition. Tetrahedron 51, 86658701.
  • 14
    Mahfoud R, Garmy N, Maresca M, Yahi N, Puigserver A & Fantini J (2002) Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. J Biol Chem 277, 1129211296.
  • 15
    Fantini J, Garmy N, Mahfoud R & Yahi N (2002) Lipid rafts: structure, function and role in HIV, Alzheimers and prion diseases. Expert Rev Mol Med 2002, 122.
  • 16
    Taïeb N, Yahi N & Fantini J (2004) Rafts and related glycosphingolipid-enriched microdomains in the intestinal epithelium: bacterial targets linked to nutrient absorption. Adv Drug Deliv Rev 56, 779794.
  • 17
    Mascioni A, Porcelli F, Ilangovan U, Ramamoorthy A & Veglia G (2003) Conformational preferences of the amylin nucleation site in SDS micelles: an NMR study. Biopolymers 69, 2941.
  • 18
    Vranken WF, Budesinsky M, Fant F, Boulez K & Borremans FA (1995) The complete consensus V3 loop peptide of the envelope protein gp120 of HIV-1 shows pronounced helical character in solution. FEBS Lett 374, 117121.
  • 19
    Klajnert B, Cortijo-Arellano M, Bryszewska M & Cladera J (2006) Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer's and prion diseases. Biochem Biophys Res Commun 339, 577582.
  • 20
    Marsh D (1996) Lateral pressures in membranes. Biochim Biophys Acta 1286, 183223.
  • 21
    Yahi N, Sabatier JM, Nickel P, Mabrouk K, Gonzalez-Scarano F & Fantini J (1994) Suramin inhibits binding of the V3 region of HIV-1 envelope glycoprotein gp120 to galactosylceramide, the receptor for HIV-1 gp120 on human colon epithelial cells. J Biol Chem 269, 2434924353.
  • 22
    Porat Y, Mazor Y, Efrat S & Gazit E (2004) Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions. Biochemistry 43, 1445414462.
  • 23
    Fantini J, Hammache D, Delézay O, Yahi N, Andre-Barres C, Rico-Lattes I & Lattes A (1997) Synthetic soluble analogs of galactosylceramide (GalCer) bind to the V3 domain of HIV-1 gp120 and inhibit HIV-1-induced fusion and entry. J Biol Chem 272, 72457252.
  • 24
    Yahi N, Fantini J, Baghdiguian S, Mabrouk K, Tamalet C, Rochat H, Van Rietschoten J & Sabatier JM (1995) SPC3, a synthetic peptide derived from the V3 domain of human immunodeficiency virus type 1 (HIV-1) gp120, inhibits HIV-1 entry into CD4+ and CD4– cells by two distinct mechanisms. Proc Natl Acad Sci USA 92, 48674871.
  • 25
    Cohen T, Frydman-Marom A, Rechter M & Gazit E (2006) Inhibition of amyloid formation and cytotoxicity by hydroxyindole derivatives. Biochemistry 45, 47274735.
  • 26
    Hammache D, Piéroni G, Yahi N, Delézay O, Koch N, Lafont H, Tamalet C & Fantini J (1998) Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J Biol Chem 273, 79677971.
  • 27
    Moodie SL, Mitchell JBO & Thornton JM (1996) Protein recognition of adenylate: an example of a fuzzy recognition template. J Mol Biol 263, 486500.
  • 28
    Porat Y, Stepensky A, Ding FX, Naider F & Gazit E (2003) Completely different amyloidogenic potential of nearly identical peptide fragments. Biopolymers 69, 161164.
  • 29
    Nunziante M, Kehler C, Maas E, Kassack MU, Groschup M & Schatzl HM (2005) Charged bipolar suramin derivatives induce aggregation of the prion protein at the cell surface and inhibit PrPsc replication. J Cell Sci 118, 49594973.
  • 30
    Quaglia M, Carazzone C, Sabella S, Colombo R, Giorgetti S, Bellotti V & De Lorenzi E (2005) Search of ligands for the amyloidogenic protein beta2-microglobulin by capillary electrophoresis and other techniques. Electrophoresis 26, 40554063.
  • 31
    Fantini J, Garmy N & Yahi N (2006) Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells. Biochemistry 45, 1095710962.
  • 32
    Castillo MJ, Scheen AJ & Lefebvre PJ (1995) Amylin/islet amyloid polypeptide: biochemistry, physiology, patho-physiology. Diabet Metab 21, 326.
  • 33
    Höppener JW, Ahren B & Lips CJ (2000) Islet amyloid and type 2 diabetes mellitus. N Engl J Med 343, 411419.
  • 34
    Osterbye T, Jorgensen KH, Fredman P, Tranum-Jensen J, Kaas A, Brange J, Whittingham JL & Buschard K (2001) Sulfatide promotes the folding of proinsulin, preserves insulin crystals, and mediates its monomerization. Glycobiology 11, 473479.
  • 35
    Buschard K, Hanspers K, Fredman P & Reich EP (2001) Treatment with sulfatide or its precursor, galactosylceramide, prevents diabetes in NOD mice. Autoimmunity 34, 917.
  • 36
    Schwede T, Kopp J, Guex N & Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31, 33813385.
  • 37
    Yahi N, Fantini J, Henry M & Tourres C & Tamalet C (2005) Structural analysis of reverse transcriptase mutations at codon 215 explains the predominance of T215Y over T215F in HIV-1 variants selected under antiretroviral therapy. J Biomed Sci 12, 701710.
  • 38
    Garmy N, Taïeb N, Yahi N & Fantini J (2005) Interaction of cholesterol with sphingosine: physicochemical characterization and impact on intestinal absorption. J Lipid Res 46, 3645.