SEARCH

SEARCH BY CITATION

References

  • 1
    Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK & Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22, 1835.
  • 2
    Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300, 535543.
  • 3
    Buettner GR & Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145, 532541.
  • 4
    Prigge ST, Mains RE, Eipper BA & Amzel LM (2000) New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell Mol Life Sci 57, 12361259.
  • 5
    Englard S & Seifter S (1986) The biochemical functions of ascorbic acid. Annu Rev Nutr 6, 365406.
  • 6
    Hirota K & Semenza GL (2005) Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem Biophys Res Commun 338, 610616.
  • 7
    Wilson JX (2005) Regulation of vitamin C transport. Annu Rev Nutr 25, 105125.
  • 8
    Takanaga H, Mackenzie B & Hediger MA (2004) Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Arch 447, 677682.
  • 9
    Liang WJ, Johnson D & Jarvis SM (2001) Vitamin C transport systems of mammalian cells. Mol Membr Biol 18, 8795.
  • 10
    Sotiriou S, Gispert S, Cheng J, Wang Y, Chen A, Hoogstraten-Miller S, Miller GF, Kwon O, Levine M, Guttentag SH et al. (2002) Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med 8, 514517.
  • 11
    Moreau R & Dabrowski K (1998) Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus): an agnathan fish with gulonolactone oxidase activity. Proc Natl Acad Sci USA 95, 1027910282.
  • 12
    Moreau R & Dabrowski K (1998) Fish acquired ascorbic acid synthesis prior to terrestrial vertebrate emergence. Free Radic Biol Med 25, 989990.
  • 13
    Birney EC, Jenness R & Ayaz KM (1976) Inability of bats to synthesise l-ascorbic acid. Nature 260, 626628.
  • 14
    Chatterjee IB (1973) Evolution and the biosynthesis of ascorbic acid. Science 182, 12711272.
  • 15
    Smirnoff N, Conklin PL & Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52, 437467.
  • 16
    Smirnoff N (2001) l-Ascorbic acid biosynthesis. Vitam Horm 61, 241266.
  • 17
    Longenecker HE, Fricke HH & King CG (1940) The effect of organic compounds upon vitamin C synthesis in the rat. J Biol Chem 135, 497510.
  • 18
    Hollmann S & Touster O (1962) Alterations in tissue levels of uridine diphosphate glucose dehydrogenase, uridine diphosphate glucuronic acid pyrophosphatase and glucuronyl transferase induced by substances influencing the production of ascorbic acid. Biochim Biophys Acta 62, 338352.
  • 19
    Horio F & Yoshida A (1982) Effects of some xenobiotics on ascorbic acid metabolism in rats. J Nutr 112, 416425.
  • 20
    Burns JJ, Mosbach EH & Schulenberg S (1954) Ascorbic acid synthesis in normal and drug-treated rats, studied with l-ascorbic-1-C14 acid. J Biol Chem 207, 679687.
  • 21
    Burns JJ, Evans C & Trousof N (1957) Stimulatory effect of barbital on urinary excretion of l-ascorbic acid and nonconjugated d-glucuronic acid. J Biol Chem 227, 785794.
  • 22
    Evans C, Conney AH, Trousof N & Burns JJ (1960) Metabolism of d-galactose to d-glucuronic acid, l-gulonic acid and l-ascorbic acid in normal and barbital-treated rats. Biochim Biophys Acta 41, 914.
  • 23
    Burns JJ & Evans C (1956) The synthesis of l-ascorbic acid in the rat from d-glucuronolactone and l-gulonolactone. J Biol Chem 223, 897905.
  • 24
    Horio F, Kimura M & Yoshida A (1983) Effect of several xenobiotics on the activities of enzymes affecting ascorbic acid synthesis in rats. J Nutr Sci Vitaminol (Tokyo) 29, 233247.
  • 25
    Horio F, Shibata T, Makino S, Machino S, Hayashi Y, Hattori T & Yoshida A (1993) UDP glucuronosyltransferase gene expression is involved in the stimulation of ascorbic acid biosynthesis by xenobiotics in rats. J Nutr 123, 20752084.
  • 26
    Iyanagi T, Watanabe T & Uchiyama Y (1989) The 3-methylcholanthrene-inducible UDP-glucuronosyltransferase deficiency in the hyperbilirubinemic rat (Gunn rat) is caused by a -1 frameshift mutation. J Biol Chem 264, 2130221307.
  • 27
    Iyanagi T (1991) Molecular basis of multiple UDP-glucuronosyltransferase isoenzyme deficiencies in the hyperbilirubinemic rat (Gunn rat). J Biol Chem 266, 2404824052.
  • 28
    Linster CL & Van Schaftingen E (2003) Rapid stimulation of free glucuronate formation by non-glucuronidable xenobiotics in isolated rat hepatocytes. J Biol Chem 278, 3632836333.
  • 29
    Ginsburg V, Weissbach A & Maxwell ES (1958) Formation of glucuronic acid from uridinediphosphate glucuronic acid. Biochim Biophys Acta 28, 649650.
  • 30
    Puhakainen E & Hänninen O (1976) Pyrophosphatase and glucuronosyltransferase in microsomal UDPglucuronic-acid metabolism in the rat liver. Eur J Biochem 61, 165169.
  • 31
    Pogell BM & Leloir LF (1961) Nucleotide activation of liver microsomal glucuronidation. J Biol Chem 236, 293298.
  • 32
    Linster CL & Van Schaftingen E (2006) Glucuronate, the precursor of vitamin C, is directly formed from UDP-glucuronate in liver. FEBS J 273, 15161527.
  • 33
    Bossuyt X & Blanckaert N (1995) Mechanism of stimulation of microsomal UDP-glucuronosyltransferase by UDP-N-acetylglucosamine. Biochem J 305, 321328.
  • 34
    Evans WH (1974) Nucleotide pyrophosphatase, a sialoglycoprotein located on the hepatocyte surface. Nature 250, 391394.
  • 35
    Touster O, Aronson NN Jr, Dulaney JT & Hendrickson H (1970) Isolation of rat liver plasma membranes. Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes. J Cell Biol 47, 604618.
  • 36
    Hochman Y & Zakim D (1984) Studies of the catalytic mechanism of microsomal UDP-glucuronyltransferase. Alpha-glucuronidase activity and its stimulation by phospholipids. J Biol Chem 259, 55215525.
  • 37
    Mano Y, Suzuki K, Yamada K & Shimazono N (1961) Enzymic studies on TPN l-hexonate dehydrogenase from rat liver. J Biochem (Tokyo) 49, 618634.
  • 38
    Jez JM & Penning TM (2001) The aldo-keto reductase (AKR) superfamily: an update. Chem Biol Interact 130–132, 499525.
  • 39
    Bohren KM, Bullock B, Wermuth B & Gabbay KH (1989) The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem 264, 95479551.
  • 40
    Griffin BW (1992) Functional and structural relationships among aldose reductase, l-hexonate dehydrogenase (aldehyde reductase), and recently identified homologous proteins. Enzyme Microb Technol 14, 690695.
  • 41
    Srivastava SK, Ansari NH, Hair GA & Das B (1984) Aldose and aldehyde reductases in human tissues. Biochim Biophys Acta 800, 220227.
  • 42
    Petrash JM & Srivastava SK (1982) Purification and properties of human liver aldehyde reductases. Biochim Biophys Acta 707, 105114.
  • 43
    Bhatnagar A, Liu S, Das B, Ansari NH & Srivastava SK (1990) Inhibition kinetics of human kidney aldose and aldehyde reductases by aldose reductase inhibitors. Biochem Pharmacol 39, 11151124.
  • 44
    Collard F, Collet JF, Gerin I, Veiga-da-Cunha M & Van Schaftingen E (1999) Identification of the cDNA encoding human 6-phosphogluconolactonase, the enzyme catalyzing the second step of the pentose phosphate pathway. FEBS Lett 459, 223226.
  • 45
    Winkelman J & Lehninger AL (1958) Aldono- and uronolactonases of animal tissues. J Biol Chem 233, 794799.
  • 46
    Bublitz C & Lehninger AL (1961) The role of aldonolactonase in the conversion of l-gulonate to l-ascorbate. Biochim Biophys Acta 47, 288297.
  • 47
    Kondo Y, Inai Y, Sato Y, Handa S, Kubo S, Shimokado K, Goto S, Nishikimi M, Maruyama N & Ishigami A (2006) Senescence marker protein 30 functions as gluconolactonase in l-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc Natl Acad Sci USA 103, 57235728.
  • 48
    Kanagasundaram V & Scopes R (1992) Isolation and characterization of the gene encoding gluconolactonase from Zymomonas mobilis. Biochim Biophys Acta 1171, 198200.
  • 49
    Yamaguchi M (2005) Role of regucalcin in maintaining cell homeostasis and function (review). Int J Mol Med 15, 371389.
  • 50
    Fujita T, Uchida K & Maruyama N (1992) Purification of senescence marker protein-30 (SMP30) and its androgen-independent decrease with age in the rat liver. Biochim Biophys Acta 1116, 122128.
  • 51
    Mori T, Ishigami A, Seyama K, Onai R, Kubo S, Shimizu K, Maruyama N & Fukuchi Y (2004) Senescence marker protein-30 knockout mouse as a novel murine model of senile lung. Pathol Int 54, 167173.
  • 52
    Stirpe F & Comporti M (1965) Regulation of ascorbic acid and of xylulose synthesis in rat-liver extracts. The effect of starvation on the enzymes of the glucuronic acid pathway. Biochem J 95, 354362.
  • 53
    Chatterjee IB, Chatterjee GC, Ghosh NC, Ghosh JJ & Guha BC (1960) Biological synthesis of l-ascorbic acid in animal tissues: conversion of l-gulonolactone into l-ascorbic acid. Biochem J 74, 193203.
  • 54
    Chatterjee IB, Chatterjee GC, Ghosh NC, Ghosh JJ & Guha BC (1960) Biological synthesis of l-ascorbic acid in animal tissues: conversion of d-glucuronolactone and l-gulonolactone into l-ascorbic acid. Biochem J 76, 279292.
  • 55
    Kiuchi K, Nishikimi M & Yagi K (1982) Purification and characterization of l-gulonolactone oxidase from chicken kidney microsomes. Biochemistry 21, 50765082.
  • 56
    Nishikimi M, Tolbert BM & Udenfriend S (1976) Purification and characterization of l-gulono-gamma-lactone oxidase from rat and goat liver. Arch Biochem Biophys 175, 427435.
  • 57
    Eliceiri GL, Lai EK & McCay PB (1969) Gulonolactone oxidase. Solubilization, properties, and partial purification. J Biol Chem 244, 26412645.
  • 58
    Ôba K, Ishikawa S, Nishikawa M, Mizuno H & Yamamoto T (1995) Purification and properties of l-galactono-gamma-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem (Tokyo) 117, 120124.
  • 59
    Østergaard J, Persiau G, Davey MW, Bauw G & Van Montagu M (1997) Isolation of a cDNA coding for l-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272, 3000930016.
  • 60
    Siendones E, González-Reyes JA, Santos-Ocaña C, Navas P & Córdoba F (1999) Biosynthesis of ascorbic acid in kidney bean. l-galactono-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol 120, 907912.
  • 61
    Koshizaka T, Nishikimi M, Ozawa T & Yagi K (1988) Isolation and sequence analysis of a complementary DNA encoding rat liver l-gulono-gamma-lactone oxidase, a key enzyme for l-ascorbic acid biosynthesis. J Biol Chem 263, 16191621.
  • 62
    Kenney WC, Edmondson DE & Singer TP (1976) Identification of the covalently bound flavin of l-gulono-gamma-lactone oxidase. Biochem Biophys Res Commun 71, 11941200.
  • 63
    Puskás F, Braun L, Csala M, Kardon T, Marcolongo P, Benedetti A, Mandl J & Bánhegyi G (1998) Gulonolactone oxidase activity-dependent intravesicular glutathione oxidation in rat liver microsomes. FEBS Lett 430, 293296.
  • 64
    Emanuelsson O, Nielsen H, Brunak S & von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300, 10051016.
  • 65
    Burns JJ, Peyser P & Moltz A (1956) Missing step in guinea pigs required for the biosynthesis of l-ascorbic acid. Science 124, 11481149.
  • 66
    Nishikimi M, Fukuyama R, Minoshima S, Shimizu N & Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for l-gulono-gamma-lactone oxidase, the enzyme for l-ascorbic acid biosynthesis missing in man. J Biol Chem 269, 1368513688.
  • 67
    Nishikimi M, Kawai T & Yagi K (1992) Guinea pigs possess a highly mutated gene for l-gulono-gamma-lactone oxidase, the key enzyme for l-ascorbic acid biosynthesis missing in this species. J Biol Chem 267, 2196721972.
  • 68
    Ohta Y & Nishikimi M (1999) Random nucleotide substitutions in primate nonfunctional gene for l-gulono-gamma-lactone oxidase, the missing enzyme in l-ascorbic acid biosynthesis. Biochim Biophys Acta 1472, 408411.
  • 69
    Bánhegyi G, Csala M, Braun L, Garzó T & Mandl J (1996) Ascorbate synthesis-dependent glutathione consumption in mouse liver. FEBS Lett 381, 3941.
  • 70
    Kawai T, Nishikimi M, Ozawa T & Yagi K (1992) A missense mutation of l-gulono-gamma-lactone oxidase causes the inability of scurvy-prone osteogenic disorder rats to synthesize l-ascorbic acid. J Biol Chem 267, 2197321976.
  • 71
    Mizushima Y, Harauchi T, Yoshizaki T & Makino S (1984) A rat mutant unable to synthesize vitamin C. Experientia 40, 359361.
  • 72
    Hasan L, Vögeli P, Stoll P, Kramer ŠŠ, Stranzinger G & Neuenschwander S (2004) Intragenic deletion in the gene encoding l-gulonolactone oxidase causes vitamin C deficiency in pigs. Mamm Genome 15, 323333.
  • 73
    Maeda N, Hagihara H, Nakata Y, Hiller S, Wilder J & Reddick R (2000) Aortic wall damage in mice unable to synthesize ascorbic acid. Proc Natl Acad Sci USA 97, 841846.
  • 74
    Hiatt HH (2001) Pentosuria. In The Metabolic and Molecular Bases of Inherited Disease (Scriver, CR, Beaudet, AL, Sly, WS & Valle, D, eds), 8th edn, Vol. I, pp. 15891599. McGraw-Hill, New York.
  • 75
    Smiley JD & Ashwell G (1961) Purification and properties of beta-l-hydroxy acid dehydrogenase. II. Isolation of beta-keto-l-gulonic acid, an intermediate in l-xylulose biosynthesis. J Biol Chem 236, 357364.
  • 76
    Ishikura S, Usami N, Araki M & Hara A (2005) Structural and functional characterization of rabbit and human l-gulonate 3-dehydrogenase. J Biochem (Tokyo) 137, 303314.
  • 77
    Winkelman J & Ashwell G (1961) Enzymic formation of l-xylulose from beta-keto-l-gulonic acid. Biochim Biophys Acta 52, 170175.
  • 78
    Nakagawa J, Ishikura S, Asami J, Isaji T, Usami N, Hara A, Sakurai T, Tsuritani K, Oda K, Takahashi M et al. (2002) Molecular characterization of mammalian dicarbonyl/l-xylulose reductase and its localization in kidney. J Biol Chem 277, 1788317891.
  • 79
    Marini I, Bucchioni L, Borella P, Del Corso A & Mura U (1997) Sorbitol dehydrogenase from bovine lens: purification and properties. Arch Biochem Biophys 340, 383391.
  • 80
    Dills WL Jr, Parsons PD, Westgate CL & Komplin NJ (1994) Assay, purification, and properties of bovine liver d-xylulokinase. Protein Expr Purif 5, 259265.
  • 81
    Tamari M, Daigo Y, Ishikawa S & Nakamura Y (1998) Genomic structure of a novel human gene (XYLB) on chromosome 3p22[RIGHTWARDS ARROW]p21.3 encoding a xylulokinase-like protein. Cytogenet Cell Genet 82, 101104.
  • 82
    Margolis JI (1929) Chronic pentosuria and migraine. Am J Med Sci 177, 348371.
  • 83
    Wang YM & Van Eys J (1970) The enzymatic defect in essential pentosuria. N Engl J Med 282, 892896.
  • 84
    Lane AB (1985) On the nature of l-xylulose reductase deficiency in essential pentosuria. Biochem Genet 23, 6172.
  • 85
    Braun L, Mile V, Schaff Z, Csala M, Kardon T, Mandl J & Bánhegyi G (1999) Induction and peroxisomal appearance of gulonolactone oxidase upon clofibrate treatment in mouse liver. FEBS Lett 458, 359362.
  • 86
    Mårtensson J & Meister A (1992) Glutathione deficiency increases hepatic ascorbic acid synthesis in adult mice. Proc Natl Acad Sci USA 89, 1156611568.
  • 87
    Chan TS, Wilson JX & O'Brien PJ (2004) Glycogenolysis is directed towards ascorbate synthesis by glutathione conjugation. Biochem Biophys Res Commun 317, 149156.
  • 88
    Braun L, Csala M, Poussu A, Garzó T, Mandl J & Bánhegyi G (1996) Glutathione depletion induces glycogenolysis dependent ascorbate synthesis in isolated murine hepatocytes. FEBS Lett 388, 173176.
  • 89
    Iyanagi T & Yamazaki I (1969) One-electron-transfer reactions in biochemical systems. III. One-electron reduction of quinones by microsomal flavin enzymes. Biochim Biophys Acta 172, 370381.
  • 90
    Ito A, Hayashi S & Yoshida T (1981) Participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in NADH-semidehydroascorbic acid reductase activity of rat liver. Biochem Biophys Res Commun 101, 591598.
  • 91
    Takano T, Ogawa K, Sato M, Bando S & Yubisui T (1987) Preliminary X-ray data of NADH-cytochrome b5 reductase from human erythrocytes. J Mol Biol 195, 749750.
  • 92
    Shirabe K, Yubisui T & Takeshita M (1989) Expression of human erythrocyte NADH-cytochrome b5 reductase as an alpha-thrombin-cleavable fused protein in Escherichia coli. Biochim Biophys Acta 1008, 189192.
  • 93
    Percy MJ, McFerran NV & Lappin TR (2005) Disorders of oxidised haemoglobin. Blood Rev 19, 6168.
  • 94
    Borgese N & Pietrini G (1986) Distribution of the integral membrane protein NADH-cytochrome b5 reductase in rat liver cells, studied with a quantitative radioimmunoblotting assay. Biochem J 239, 393403.
  • 95
    Borgese N, D'Arrigo A, De Silvestris M & Pietrini G (1993) NADH-cytochrome b5 reductase and cytochrome b5 isoforms as models for the study of post-translational targeting to the endoplasmic reticulum. FEBS Lett 325, 7075.
  • 96
    Shirabe K, Landi MT, Takeshita M, Uziel G, Fedrizzi E & Borgese N (1995) A novel point mutation in a 3′ splice site of the NADH-cytochrome b5 reductase gene results in immunologically undetectable enzyme and impaired NADH-dependent ascorbate regeneration in cultured fibroblasts of a patient with type II hereditary methemoglobinemia. Am J Hum Genet 57, 302310.
  • 97
    Bando M, Inoue T, Oka M, Nakamura K, Kawai K, Obazawa H, Kobayashi S & Takehana M (2004) Isolation of ascorbate free radical reductase from rabbit lens soluble fraction. Exp Eye Res 79, 869873.
  • 98
    May JM, Cobb CE, Mendiratta S, Hill KE & Burk RF (1998) Reduction of the ascorbyl free radical to ascorbate by thioredoxin reductase. J Biol Chem 273, 2303923045.
  • 99
    Njus D & Kelley PM (1993) The secretory-vesicle ascorbate-regenerating system: a chain of concerted H+/e-transfer reactions. Biochim Biophys Acta 1144, 235248.
  • 100
    Njus D, Knoth J, Cook C & Kelley PM (1983) Electron transfer across the chromaffin granule membrane. J Biol Chem 258, 2730.
  • 101
    Fleming PJ & Kent UM (1991) Cytochrome b561, ascorbic acid, and transmembrane electron transfer. Am J Clin Nutr 54, 1173S1178S.
  • 102
    Diliberto EJ Jr, Dean G, Carter C & Allen PL (1982) Tissue, subcellular, and submitochondrial distributions of semidehydroascorbate reductase: possible role of semidehydroascorbate reductase in cofactor regeneration. J Neurochem 39, 563568.
  • 103
    Njus D, Kelley PM, Harnadek GJ & Pacquing YV (1987) Mechanism of ascorbic acid regeneration mediated by cytochrome b561. Ann NY Acad Sci 493, 108119.
  • 104
    Perin MS, Fried VA, Slaughter CA & Südhof TC (1988) The structure of cytochrome b561, a secretory vesicle-specific electron transport protein. EMBO J 7, 26972703.
  • 105
    Bashtovyy D, Bérczi A, Asard H & Páli T (2003) Structure prediction for the di-heme cytochrome b561 protein family. Protoplasma 221, 3140.
  • 106
    Bérczi A, Su D, Lakshminarasimhan M, Vargas A & Asard H (2005) Heterologous expression and site-directed mutagenesis of an ascorbate-reducible cytochrome b561. Arch Biochem Biophys 443, 8292.
  • 107
    Takigami T, Takeuchi F, Nakagawa M, Hase T & Tsubaki M (2003) Stopped-flow analyses on the reaction of ascorbate with cytochrome b561 purified from bovine chromaffin vesicle membranes. Biochemistry 42, 81108118.
  • 108
    May JM, Qu Z & Cobb CE (2000) Extracellular reduction of the ascorbate free radical by human erythrocytes. Biochem Biophys Res Commun 267, 118123.
  • 109
    Van Duijn MM, Tijssen K, VanSteveninck J, Van den Broek PJ & Van der Zee J (2000) Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. J Biol Chem 275, 2772027725.
  • 110
    Van Duijn MM, Buijs JT, Van der Zee J & Van den Broek PJ (2001) The ascorbate: ascorbate free radical oxidoreductase from the erythrocyte membrane is not cytochrome b561. Protoplasma 217, 94100.
  • 111
    Navas P, Estévez A, Burón MI, Villalba JM & Crane FL (1988) Cell surface glycoconjugates control the activity of the NADH-ascorbate free radical reductase of rat liver plasma membrane. Biochem Biophys Res Commun 154, 10291033.
  • 112
    Alcain FJ, Buron MI, Villalba JM & Navas P (1991) Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system. Biochim Biophys Acta 1073, 380385.
  • 113
    May JM (1999) Is ascorbic acid an antioxidant for the plasma membrane? FASEB J 13, 9951006.
  • 114
    Schweinzer E, Waeg G, Esterbauer H & Goldenberg H (1993) No enzymatic activities are necessary for the stabilization of ascorbic acid by K-562 cells. FEBS Lett 334, 106108.
  • 115
    Rodríguez-Aguilera JC & Navas P (1994) Extracellular ascorbate stabilization: enzymatic or chemical process? J Bioenerg Biomembr 26, 379384.
  • 116
    Villalba JM, Canalejo A, Rodríguez-Aguilera JC, Burón MI, Morré DJ & Navas P (1993) NADH-ascorbate free radical and -ferricyanide reductase activities represent different levels of plasma membrane electron transport. J Bioenerg Biomembr 25, 411417.
  • 117
    Villalba JM, Navarro F, Córdoba F, Serrano A, Arroyo A, Crane FL & Navas P (1995) Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport. Proc Natl Acad Sci USA 92, 48874891.
  • 118
    Navarro F, Villalba JM, Crane FL, Mackellar WC & Navas P (1995) A phospholipid-dependent NADH-coenzyme Q reductase from liver plasma membrane. Biochem Biophys Res Commun 212, 138143.
  • 119
    Arroyo A, Rodríguez-Aguilera JC, Santos-Ocaña C, Villalba JM & Navas P (2004) Stabilization of extracellular ascorbate mediated by coenzyme Q transmembrane electron transport. Methods Enzymol 378, 207217.
  • 120
    Van Duijn MM, Van der Zee J, VanSteveninck J & Van den Broek PJ (1998) Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. J Biol Chem 273, 1341513420.
  • 121
    Winkler BS, Orselli SM & Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17, 333349.
  • 122
    Bode AM, Cunningham L & Rose RC (1990) Spontaneous decay of oxidized ascorbic acid (dehydro-l-ascorbic acid) evaluated by high-pressure liquid chromatography. Clin Chem 36, 18071809.
  • 123
    Wells WW, Xu DP, Yang Y & Rocque PA (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 265, 1536115364.
  • 124
    Wells WW & Xu DP (1994) Dehydroascorbate reduction. J Bioenerg Biomembr 26, 369377.
  • 125
    Bánhegyi G, Csala M, Szarka A, Varsányi M, Benedetti A & Mandl J (2003) Role of ascorbate in oxidative protein folding. Biofactors 17, 3746.
  • 126
    Fernando MR, Satake M, Monnier VM & Lou MF (2004) Thioltranferase mediated ascorbate recycling in human lens epithelial cells. Invest Ophthalmol Vis Sci 45, 230237.
  • 127
    Xu DP, Washburn MP, Sun GP & Wells WW (1996) Purification and characterization of a glutathione dependent dehydroascorbate reductase from human erythrocytes. Biochem Biophys Res Commun 221, 117121.
  • 128
    Maellaro E, Del Bello B, Sugherini L, Santucci A, Comporti M & Casini AF (1994) Purification and characterization of glutathione-dependent dehydroascorbate reductase from rat liver. Biochem J 301, 471476.
  • 129
    Paolicchi A, Pezzini A, Saviozzi M, Piaggi S, Andreuccetti M, Chieli E, Malvaldi G & Casini AF (1996) Localization of a GSH-dependent dehydroascorbate reductase in rat tissues and subcellular fractions. Arch Biochem Biophys 333, 489495.
  • 130
    Ishikawa T, Casini AF & Nishikimi M (1998) Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase. J Biol Chem 273, 2870828712.
  • 131
    Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M & Board PG (2005) Characterization of the omega class of glutathione transferases. Methods Enzymol 401, 7899.
  • 132
    Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV et al. (2000) Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem 275, 2479824806.
  • 133
    Schmuck EM, Board PG, Whitbread AK, Tetlow N, Cavanaugh JA, Blackburn AC & Masoumi A (2005) Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases. Pharmacogenet Genomics 15, 493501.
  • 134
    Del Bello B, Maellaro E, Sugherini L, Santucci A, Comporti M & Casini AF (1994) Purification of NADPH-dependent dehydroascorbate reductase from rat liver and its identification with 3 alpha-hydroxysteroid dehydrogenase. Biochem J 304, 385390.
  • 135
    May JM, Mendiratta S, Hill KE & Burk RF (1997) Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem 272, 2260722610.
  • 136
    Coassin M, Tomasi A, Vannini V & Ursini F (1991) Enzymatic recycling of oxidized ascorbate in pig heart: one-electron vs two-electron pathway. Arch Biochem Biophys 290, 458462.
  • 137
    Mårtensson J & Meister A (1991) Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects. Proc Natl Acad Sci USA 88, 46564660.
  • 138
    Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269, 93979400.
  • 139
    Simpson GL & Ortwerth BJ (2000) The non-oxidative degradation of ascorbic acid at physiological conditions. Biochim Biophys Acta 1501, 1224.
  • 140
    Deutsch JC (1998) Oxygen-accepting antioxidants which arise during ascorbate oxidation. Anal Biochem 265, 238245.
  • 141
    Hellman L & Burns JJ (1958) Metabolism of l-ascorbic acid-1-C14 in man. J Biol Chem 230, 923930.
  • 142
    Massey LK, Liebman M & Kynast-Gales SA (2005) Ascorbate increases human oxaluria and kidney stone risk. J Nutr 135, 16731677.
  • 143
    Kagawa Y & Takiguchi H (1962) Enzymatic studies on ascorbic acid catabolism in animals. II. Delactonization of dehydro-l-ascorbic acid. J Biochem (Tokyo) 51, 197203.
  • 144
    Koshiishi I, Mamura Y & Imanari T (1998) Bicarbonate promotes a cleavage of lactone ring of dehydroascorbate. Biochim Biophys Acta 1379, 257263.
  • 145
    Kagawa Y, Takiguchi H & Shimazono N (1961) Enzymic delactonization of dehydro-l-ascorbate in animal tissues. Biochim Biophys Acta 51, 413415.
  • 146
    Yamada K, Ishikawa S & Shimazono N (1959) On the microsomal and soluble lactonases. Biochim Biophys Acta 32, 253255.
  • 147
    Yamaguchi M, Misawa H, Uchiyama S, Morooka Y & Tsurusaki Y (2002) Role of endogenous regucalcin in bone metabolism: bone loss is induced in regucalcin transgenic rats. Int J Mol Med 10, 377383.
  • 148
    Uchiyama S & Yamaguchi M (2004) Bone loss in regucalcin transgenic rats: enhancement of osteoclastic cell formation from bone marrow of rats with increasing age. Int J Mol Med 14, 451455.
  • 149
    Braun L, Puskás F, Csala M, Györffy E, Garzó T, Mandl J & Bánhegyi G (1996) Gluconeogenesis from ascorbic acid: ascorbate recycling in isolated murine hepatocytes. FEBS Lett 390, 183186.
  • 150
    Yew WS & Gerlt JA (2002) Utilization of l-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J Bacteriol 184, 302306.
  • 151
    Zhang Z, Aboulwafa M, Smith MH & Saier MH Jr (2003) The ascorbate transporter of Escherichia coli. J Bacteriol 185, 22432250.
  • 152
    Campos E, Aguilar J, Baldoma L & Badia J (2002) The gene yjfQ encodes the repressor of the yjfR-X regulon (ula), which is involved in l-ascorbate metabolism in Escherichia coli. J Bacteriol 184, 60656068.
  • 153
    Campos E, Baldoma L, Aguilar J & Badia J (2004) Regulation of expression of the divergent ulaG and ulaABCDEF operons involved in l-ascorbate dissimilation in Escherichia coli. J Bacteriol 186, 17201728.
  • 154
    Forouhar F, Lee I, Benach J, Kulkarni K, Xiao R, Acton TB, Montelione GT & Tong L (2004) A novel NAD-binding protein revealed by the crystal structure of 2,3-diketo-l-gulonate reductase (YiaK). J Biol Chem 279, 1314813155.