• 1
    Harding HP, Calfon M, Urano F, Novoa I & Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18, 575599.
  • 2
    Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451454.
  • 3
    Patil C & Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13, 349355.
  • 4
    Schroder M & Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569, 2963.
  • 5
    Dorner AJ, Wasley LC, Raney P, Haugejorden S, Green M & Kaufman RJ (1990) The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J Biol Chem 265, 2202922034.
  • 6
    Takatsuki A, Arima K & Tamura G (1971) Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J Antibiot (Tokyo) 24, 215223.
  • 7
    Lin HY, Masso-Welch PYP, Cai JW, Shen JW & Subjeck JR (1993) The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin. Mol Biol Cell 4, 11091119.
  • 8
    Price BD, Mannheim-Rodman LA & Calderwood SK (1992) Brefeldin A, thapsigargin, and AIF4- stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. J Cell Physiol 152, 545552.
  • 9
    Brostrom MA, Prostko CR, Gmitter D & Brostrom CO (1995) Independent signaling of grp78 gene transcription and phosphorylation of eukaryotic initiator factor 2 alpha by the stressed endoplasmic reticulum. J Biol Chem 270, 41274132.
  • 10
    Fernandez F, Jannatipour M, Hellman U, Rokeach LA & Parodi AJ (1996) A new stress protein: synthesis of Schizosaccharomyces pombe UDP-Glc:glycoprotein glucosyltransferase mRNA is induced by stress conditions but the enzyme is not essential for cell viability. EMBO J 15, 705713.
  • 11
    Ikeda J, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, Matsumoto M, Yura T & Yanagi H (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem Biophys Res Commun 230, 9499.
  • 12
    Gething MJ (1997) Guidebook to Molecular Chaperones and Protein-Folding Catalysts. Oxford University Press, Oxford.
  • 13
    Deprez P, Gautschi M & Helenius A (2005) More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Mol Cell 19, 183195.
  • 14
    Gross E, Kastner DB, Kaiser CA & Fass D (2004) Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell 117, 601610.
  • 15
    Ahner A & Brodsky JL (2004) Checkpoints in ER-associated degradation: excuse me, which way to the proteasome? Trends Cell Biol 14, 474478.
  • 16
    Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14, 476482.
  • 17
    Jarosch E, Lenk U & Sommer T (2003) Endoplasmic reticulum-associated protein degradation. Int Rev Cytol 223, 3981.
  • 18
    Eriksson KK, Vago R, Calanca V, Galli C, Paganetti P & Molinari M (2004) EDEM contributes to maintenance of protein folding efficiency and secretory capacity. J Biol Chem 279, 4460044605.
  • 19
    Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A & Nagata K (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2, 415422.
  • 20
    Hosokawa N, Wada I, Natsuka Y & Nagata K (2006) EDEM accelerates ERAD by preventing aberrant dimer formation of misfolded alpha1-antitrypsin. Genes Cells 11, 465476.
  • 21
    Molinari M, Calanca V, Galli C, Lucca P & Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299, 13971400.
  • 22
    Oda Y, Hosokawa N, Wada I & Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299, 13941397.
  • 23
    Hirao K, Natsuka Y, Tamura T, Wada I, Morito D, Natsuka S, Romero P, Sleno B, Tremblay LO, Herscovics A, et al. (2006) EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J Biol Chem 281, 96509658.
  • 24
    Mast SW, Diekman K, Karaveg K, Davis A, Sifers RN & Moremen KW (2005) Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15, 421436.
  • 25
    Olivari S, Galli C, Alanen H, Ruddock L & Molinari M (2005) A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J Biol Chem 280, 24242428.
  • 26
    Bhamidipati A, Denic V, Quan EM & Weissman JS (2005) Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol Cell 19, 741751.
  • 27
    Buschhorn BA, Kostova Z, Medicherla B & Wolf DH (2004) A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett 577, 422426.
  • 28
    Szathmary R, Bielmann R, Nita-Lazar M, Burda P & Jakob CA (2005) Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol Cell 19, 765775.
  • 29
    Cruciat CM, Hassler C & Niehrs C (2006) The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. J Biol Chem 281, 1298612993.
  • 30
    Lee RJ, Liu CW, Harty C, McCracken AA, Latterich M, Romisch K, DeMartino GN, Thomas PJ & Brodsky JL (2004) Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J 23, 22062215.
  • 31
    Spear ED & Ng DT (2005) Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation. J Cell Biol 169, 7382.
  • 32
    Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM & Brodsky JL (2003) Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 14, 34373448.
  • 33
    Molinari M, Galli C, Piccaluga V, Pieren M & Paganetti P (2002) Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 158, 247257.
  • 34
    Nishikawa SI, Fewell SW, Kato Y, Brodsky JL & Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153, 10611070.
  • 35
    YeY, Shibata Y, Yun C, Ron D & Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841847.
  • 36
    Bordallo J, Plemper RK, Finger A & Wolf DH (1998) Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell 9, 209222.
  • 37
    Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K & Mori K (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172, 383393.
  • 38
    Rabinovich E, Kerem A, Frohlich KU, Diamant N & Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22, 626634.
  • 39
    YeY, Meyer HH & Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652656.
  • 40
    Elkabetz Y, Shapira I, Rabinovich E & Bar-Nun S (2004) Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplamic reticulum-bound p97/Cdc48p and proteasome. J Biol Chem 279, 39803989.
  • 41
    Richly H, Rape M, Braun S, Rumpf S, Hoege C & Jentsch S (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 7384.
  • 42
    YeY, Meyer HH & Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162, 7184.
  • 43
    Bays NW, Gardner RG, Seelig LP, Joazeiro CA & Hampton RY (2001) Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat Cell Biol 3, 2429.
  • 44
    Hampton RY, Gardner RG & Rine J (1996) Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 7, 20292044.
  • 45
    Ravid T, Kreft SG & Hochstrasser M (2006) Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J 25, 533543.
  • 46
    Song BL, Sever N & DeBose-Boyd RA (2005) Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol Cell 19, 829840.
  • 47
    Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M, Brodsky JL & Michaelis S (2004) Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J Biol Chem 279, 3836938378.
  • 48
    Kruse KB, Brodsky JL & McCracken AA (2006) Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 17, 203212.
  • 49
    Carvalho P, Goder V & Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361373.
  • 50
    Denic V, Quan EM & Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126, 349359.
  • 51
    Gauss R, Jarosch E, Sommer T & Hirsch C (2006) A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 8, 849854.
  • 52
    Yoshida Y, Adachi E, Fukiya K, Iwai K & Tanaka K (2005) Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates. EMBO Rep 6, 239244.
  • 53
    Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K & Tai T (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438442.
  • 54
    Younger JM, Chen L, Ren HY, Rosser MF, Turnbull EL, Fan CY, Patterson C & Cyr DM (2006) Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571582.
  • 55
    Schuberth C & Buchberger A (2005) Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat Cell Biol 7, 9991006.
  • 56
    Zhong X, Shen Y, Ballar P, Apostolou A, Agami R & Fang S (2004) AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem 279, 4567645684.
  • 57
    Kokame K, Agarwala KL, Kato H & Miyata T (2000) Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress. J Biol Chem 275, 3284632853.
  • 58
    Schulze A, Standera S, Buerger E, Kikkert M, van Voorden S, Wiertz E, Koning F, Kloetzel PM & Seeger M (2005) The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J Mol Biol 354, 10211027.
  • 59
    Katiyar S, Joshi S & Lennarz WJ (2005) The retrotranslocation protein Derlin-1 binds peptide: N-glycanase to the endoplasmic reticulum. Mol Biol Cell 16, 45844594.
  • 60
    Medicherla B, Kostova Z, Schaefer A & Wolf DH (2004) A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep 5, 692697.
  • 61
    Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M & Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6, 10991108.
  • 62
    Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD & Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7, 11531163.
  • 63
    Harding HP, Zhang Y & Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271274.
  • 64
    Bertolotti A, Zhang Y, Hendershot LM, Harding HP & Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2, 326332.
  • 65
    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11, 619633.
  • 66
    Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, et al. (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307, 935939.
  • 67
    Haze K, Yoshida H, Yanagi H, Yura T & Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10, 37873799.
  • 68
    Yoshida H, Haze K, Yanagi H, Yura T & Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273, 3374133749.
  • 69
    Yoshida H, Matsui T, Yamamoto A, Okada T & Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881891.
  • 70
    Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M & Mori K (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20, 67556767.
  • 71
    Chen X, Shen J & Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277, 1304513052.
  • 72
    Shen J, Chen X, Hendershot L & Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3, 99111.
  • 73
    Shen J & Prywes R (2004) Dependence of site-2 protease cleavage of ATF6 on prior site-1 protease digestion is determined by the size of the luminal domain of ATF6. J Biol Chem 279, 4304643051.
  • 74
    Shen J, Snapp EL, Lippincott-Schwartz J & Prywes R (2005) Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol Cell Biol 25, 921932.
  • 75
    YeJ, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS & Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6, 13551364.
  • 76
    Anderson RG (2003) Joe Goldstein and Mike Brown: from cholesterol homeostasis to new paradigms in membrane biology. Trends Cell Biol 13, 534539.
  • 77
    Haze K, Okada T, Yoshida H, Yanagi H, Yura T, Negishi M & Mori K (2001) Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J 355, 1928.
  • 78
    Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH & Kaufman RJ (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587599.
  • 79
    Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A & Imaizumi K (2005) OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 7, 186194.
  • 80
    Nagamori I, Yabuta N, Fujii T, Tanaka H, Yomogida K, Nishimune Y & Nojima H (2005) Tisp40, a spermatid specific bZip transcription factor, functions by binding to the unfolded protein response element via the Rip pathway. Genes Cells 10, 575594.
  • 81
    DenBoer LM, Hardy-Smith PW, Hogan MR, Cockram GP, Audas TE & Lu R (2005) Luman is capable of binding and activating transcription from the unfolded protein response element. Biochem Biophys Res Commun 331, 113119.
  • 82
    Raggo C, Rapin N, Stirling J, Gobeil P, Smith-Windsor E, O'Hare P & Misra V (2002) Luman, the cellular counterpart of herpes simplex virus VP16, is processed by regulated intramembrane proteolysis. Mol Cell Biol 22, 56395649.
  • 83
    Stirling J & O'Hare P (2006) CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P. Mol Biol Cell 17, 413426.
  • 84
    Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A & Kohno K (2001) Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 3, 158164.
  • 85
    Tirasophon W, Welihinda AA & Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12, 18121824.
  • 86
    Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M & Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17, 57085717.
  • 87
    Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG & Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 9296.
  • 88
    Kaneko M & Nomura Y (2003) ER signaling in unfolded protein response. Life Sci 74, 199205.
  • 89
    Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K & Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4, 265271.
  • 90
    Lee AH, Iwakoshi NN & Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23, 74487459.
  • 91
    Sriburi R, Jackowski S, Mori K & Brewer JW (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 167, 3541.
  • 92
    Lee AH, Chu GC, Iwakoshi NN & Glimcher LH (2005) XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J 24, 43684380.
  • 93
    Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, Scott A, Orkin SH, Byrne MC, et al. (2000) An essential role in liver development for transcription factor XBP-1. Genes Dev 14, 152157.
  • 94
    Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F & Glimcher LH (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300307.
  • 95
    Zhang K, Wong HN, Song B, Miller CN, Scheuner D & Kaufman RJ (2005) The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis. J Clin Invest 115, 268281.
  • 96
    Yoshida H, Oku M, Suzuki M & Mori K (2006) pXBP1 (U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1 (S) in mammalian ER stress response. J Cell Biol 172, 565575.
  • 97
    Bertolotti A, Wang X, Novoa I, Jungreis R, Schlessinger K, Cho JH, West AB & Ron D (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest 107, 585593.
  • 98
    Credle JJ, Finer-Moore JS, Papa FR, Stroud RM & Walter P (2005) On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci USA 102, 1877318784.
  • 99
    Breckenridge DG, Germain M, Mathai JP, Nguyen M & Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 86088618.
  • 100
    Ferri KF & Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3, E255E263.
  • 101
    Kadowaki H, Nishitoh H & Ichijo H (2004) Survival and apoptosis signals in ER stress: the role of protein kinases. J Chem Neuroanat 28, 93100.
  • 102
    Kim R, Emi M, Tanabe K & Murakami S (2006) Role of the unfolded protein response in cell death. Apoptosis 11, 513.
  • 103
    Oyadomari S & Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11, 381389.
  • 104
    Rao RV, Ellerby HM & Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11, 372380.
  • 105
    Szegezdi E, Fitzgerald U & Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010, 186194.
  • 106
    Ma Y, Brewer JW, Diehl JA & Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318, 13511365.
  • 107
    Ron D & Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant- negative inhibitor of gene transcription. Genes Dev 6, 439453.
  • 108
    Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL & Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12, 982995.
  • 109
    Novoa I, Zeng H, Harding HP & Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153, 10111022.
  • 110
    Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP & Ron D (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18, 30663077.
  • 111
    Yamaguchi H & Wang HG (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279, 4549545502.
  • 112
    Sok J, Wang XZ, Batchvarova N, Kuroda M, Harding H & Ron D (1999) CHOP-Dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol Cell Biol 19, 495504.
  • 113
    Wang XZ, Kuroda M, Sok J, Batchvarova N, Kimmel R, Chung P, Zinszner H & Ron D (1998) Identification of novel stress-induced genes downstream of chop. EMBO J 17, 36193630.
  • 114
    Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP & Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664666.
  • 115
    Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A & Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16, 13451355.
  • 116
    Mauro C, Crescenzi E, De Mattia R, Pacifico F, Mellone S, Salzano S, de Luca C, D'Adamio L, Palumbo G, Formisano S, et al. (2006) Central role of the scaffold protein tumor necrosis factor receptor-associated factor 2 in regulating endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281, 26312638.
  • 117
    Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T & Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276, 1393513940.
  • 118
    Zhang C, Kawauchi J, Adachi MT, Hashimoto Y, Oshiro S, Aso T & Kitajima S (2001) Activation of JNK and transcriptional repressor ATF3/LRF1 through the IRE1/TRAF2 pathway is implicated in human vascular endothelial cell death by homocysteine. Biochem Biophys Res Commun 289, 718724.
  • 119
    Yang Q, Kim YS, Lin Y, Lewis J, Neckers L & Liu ZG (2006) Tumour necrosis factor receptor 1 mediates endoplasmic reticulum stress-induced activation of the MAP kinase JNK. EMBO Rep 7, 622627.
  • 120
    Hu P, Han Z, Couvillon AD, Kaufman RJ & Exton JH (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26, 30713084.
  • 121
    Ji C, Deng Q & Kaplowitz N (2004) Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology 40, 442451.
  • 122
    Cheung HH, Lynn Kelly N, Liston P & Korneluk RG (2006) Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: A role for the IAPs. Exp Cell Res 312, 23472357.
  • 123
    Dahmer MK (2005) Caspases-2, -3, and -7 are involved in thapsigargin-induced apoptosis of SH-SY5Y neuroblastoma cells. J Neurosci Res 80, 576583.
  • 124
    Di Sano F, Ferraro E, Tufi R, Achsel T, Piacentini M & Cecconi F (2006) Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 281, 26932700.
  • 125
    Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, et al. (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165, 347356.
  • 126
    Kim SJ, Zhang Z, Hitomi E, Lee YC & Mukherjee AB (2006) Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet 15, 18261834.
  • 127
    Liu N, Scofield VL, Qiang W, Yan M, Kuang X & Wong PK (2006) Interaction between endoplasmic reticulum stress and caspase 8 activation in retrovirus MoMuLV-ts1-infected astrocytes. Virology 348, 398405.
  • 128
    Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM & Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276, 3386933874.
  • 129
    Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ & Lee AS (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278, 2091520924.
  • 130
    Song L, De Sarno P & Jope RS (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277, 4470144708.
  • 131
    Warnakulasuriyarachchi D, Cerquozzi S, Cheung HH & Holcik M (2004) Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J Biol Chem 279, 1714817157.
  • 132
    Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS & Greer PA (2006) Ubiquitous calpains promote caspase-12 and Jnk activation during ER stress-induced apoptosis. J Biol Chem 281, 1601616024.
  • 133
    Morishima N, Nakanishi K, Takenouchi H, Shibata T & Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277, 3428734294.
  • 134
    Nakagawa T & Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887894.
  • 135
    Bitko V & Barik S (2001) An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J Cell Biochem 80, 441454.
  • 136
    Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY, Kominami E, Kuida K, Sakamaki K, Yonehara S, et al. (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet 11, 15051515.
  • 137
    Mouw G, Zechel JL, Gamboa J, Lust WD, Selman WR & Ratcheson RA (2003) Activation of caspase-12, an endoplasmic reticulum resident caspase, after permanent focal ischemia in rat. Neuroreport 14, 183186.
  • 138
    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA & Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98103.
  • 139
    Shibata M, Hattori H, Sasaki T, Gotoh J, Hamada J & Fukuuchi Y (2003) Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice. Neuroscience 118, 491499.
  • 140
    Fischer H, Koenig U, Eckhart L & Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293, 722726.
  • 141
    McCullough KD, Martindale JL, Klotz LO, Aw TY & Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21, 12491259.
  • 142
    Contreras JL, Smyth CA, Bilbao G, Eckstein C, Young CJ, Thompson JA, Curiel DT & Eckhoff DE (2003) Coupling endoplasmic reticulum stress to cell death program in isolated human pancreatic islets: effects of gene transfer of Bcl-2. Transpl Int 16, 537542.
  • 143
    Elyaman W, Terro F, Suen KC, Yardin C, Chang RC & Hugon J (2002) BAD and Bcl-2 regulation are early events linking neuronal endoplasmic reticulum stress to mitochondria-mediated apoptosis. Brain Res Mol Brain Res 109, 233238.
  • 144
    Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T & Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135139.
  • 145
    Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J & Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162, 5969.
  • 146
    Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, et al. (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312, 572576.
  • 147
    Zong WX, Lindsten T, Ross AJ, MacGregor GR & Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15, 14811486.
  • 148
    Li J, Lee B & Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281, 72607270.
  • 149
    Reimertz C, Kogel D, Rami A, Chittenden T & Prehn JH (2003) Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 162, 587597.
  • 150
    Morishima N, Nakanishi K, Tsuchiya K, Shibata T & Seiwa E (2004) Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem 279, 5037550381.
  • 151
    Chae HJ, Kim HR, Xu C, Bailly-Maitre B, Krajewska M, Krajewski S, Banares S, Cui J, Digicaylioglu M, Ke N, et al. (2004) BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell 15, 355366.
  • 152
    Mathai JP, Germain M & Shore GC (2005) BH3-only BIK regulates BAX,BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem 280, 2382923836.
  • 153
    Zuppini A, Groenendyk J, Cormack LA, Shore G, Opas M, Bleackley RC & Michalak M (2002) Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis. Biochemistry 41, 28502858.
  • 154
    Hu P, Han Z, Couvillon AD & Exton JH (2004) Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279, 4942049429.
  • 155
    Wootz H, Hansson I, Korhonen L & Lindholm D (2006) XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. Exp Cell Res 312, 18901898.
  • 156
    Ito Y, Pandey P, Mishra N, Kumar S, Narula N, Kharbanda S, Saxena S & Kufe D (2001) Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol 21, 62336242.
  • 157
    Li B, Cong F, Tan CP, Wang SX & Goff SP (2002) Aph2, a protein with a zf-DHHC motif, interacts with c-Abl and has pro-apoptotic activity. J Biol Chem 277, 2887028876.
  • 158
    Onuki R, Bando Y, Suyama E, Katayama T, Kawasaki H, Baba T, Tohyama M & Taira K (2004) An RNA-dependent protein kinase is involved in tunicamycin-induced apoptosis and Alzheimer's disease. EMBO J 23, 959968.
  • 159
    Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, de Koning AB, Tang D, Wu D, Falk E, et al. (2003) TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol Chem 278, 3031730327.
  • 160
    Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ & Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23, 71987209.
  • 161
    Wang W & Chan JY (2006) Nrf1 is targeted to the ER membrane by a N-terminal transmembrane domain: inhibition of nuclear translocation and transacting function. J Biol Chem 281, 1967619687.
  • 162
    Nakanishi K, Sudo T & Morishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169, 555560.
  • 163
    Corcoran CA, Luo X, He Q, Jiang C, Huang Y & Sheikh MS (2005) Genotoxic and endoplasmic reticulum stresses differentially regulate TRB3 expression. Cancer Biol Ther 4, 10631067.
  • 164
    Ohoka N, Yoshii S, Hattori T, Onozaki K & Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24, 12431255.
  • 165
    Pluquet O, Qu LK, Baltzis D & Koromilas AE (2005) Endoplasmic reticulum stress accelerates p53 degradation by the cooperative actions of Hdm2 and glycogen synthase kinase 3beta. Mol Cell Biol 25, 93929405.
  • 166
    Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, Koumenis C, Taya Y, Yoshimura A & Koromilas AE (2004) Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev 18, 261277.
  • 167
    Qu L & Koromilas AE (2004) Control of tumor suppressor p53 function by endoplasmic reticulum stress. Cell Cycle 3, 567570.
  • 168
    Adachi K, Toyota M, Sasaki Y, Yamashita T, Ishida S, Ohe-Toyota M, Maruyama R, Hinoda Y, Saito T, Imai K, et al. (2004) Identification of SCN3B as a novel p53-inducible proapoptotic gene. Oncogene 23, 77917798.
  • 169
    Bourdon JC, Renzing J, Robertson PL, Fernandes KN & Lane DP (2002) Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane. J Cell Biol 158, 235246.
  • 170
    Aoki S, Su Q, Li H, Nishikawa K, Ayukawa K, Hara Y, Namikawa K, Kiryu-Seo S, Kiyama H & Wada K (2002) Identification of an axotomy-induced glycosylated protein, AIGP1, possibly involved in cell death triggered by endoplasmic reticulum-Golgi stress. J Neurosci 22, 1075110760.
  • 171
    Talapatra S, Wagner JD & Thompson CB (2002) Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death Differ 9, 856861.
  • 172
    Wang X, Shao Z, Zetoune FS, Zeidler MG, Gowrishankar K & Vincenz C (2003) NRADD, a novel membrane protein with a death domain involved in mediating apoptosis in response to ER stress. Cell Death Differ 10, 580591.
  • 173
    Bence NF, Sampat RM & Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 15521555.
  • 174
    Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M & Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell 15, 95105.
  • 175
    Sugars KL & Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19, 233238.
  • 176
    Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10, 524530.
  • 177
    Behrends C, Langer CA, Boteva R, Bottcher UM, Stemp MJ, Schaffar G, Rao BV, Giese A, Kretzschmar H, Siegers K, et al. (2006) Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell 23, 887897.
  • 178
    Chan HY, Warrick JM, Gray-Board GL, Paulson HL & Bonini NM (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9, 28112820.
  • 179
    Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT & Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19, 148154.
  • 180
    Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK & Hartl FU (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci USA 97, 78417846.
  • 181
    Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI & Plasterk RH (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci USA 101, 64036408.
  • 182
    Forman MS, Lee VM & Trojanowski JQ (2003) ‘Unfolding’ pathways in neurodegenerative disease. Trends Neurosci 26, 407410.
  • 183
    Gow A & Sharma R (2003) The unfolded protein response in protein aggregating diseases. Neuromolecular Med 4, 7394.
  • 184
    Zhao L, Longo-Guess C, Harris BS, Lee JW & Ackerman SL (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37, 974979.
  • 185
    Imaizumi K, Katayama T & Tohyama M (2001) Presenilin and the UPR. Nat Cell Biol 3, E104.
  • 186
    Lindholm D, Wootz H & Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13, 385392.
  • 187
    Mattson MP, Gary DS, Chan SL & Duan W (2001) Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer's disease. Biochem Soc Symp 151162.
  • 188
    Mattson MP, Guo Q, Furukawa K & Pedersen WA (1998) Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease. J Neurochem 70, 114.
  • 189
    Paschen W & Mengesdorf T (2005) Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38, 409415.
  • 190
    Pereira C, Ferreiro E, Cardoso SM & de Oliveira CR (2004) Cell degeneration induced by amyloid-beta peptides: implications for Alzheimer's disease. J Mol Neurosci 23, 97104.
  • 191
    Zhang K & Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66, S102S109.
  • 192
    Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, et al. (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1, 479485.
  • 193
    Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, Mori K, Rozmahel R, Fraser P, George-Hyslop PS, et al. (2001) Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J Biol Chem 276, 4344643454.
  • 194
    Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P & Scheper W (2005) The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol (Berl) 110, 165172.
  • 195
    Unterberger U, Hoftberger R, Gelpi E, Flicker H, Budka H & Voigtlander T (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65, 348357.
  • 196
    Saltini G, Dominici R, Lovati C, Cattaneo M, Michelini S, Malferrari G, Caprera A, Milanesi L, Finazzi D, Bertora P, et al. (2006) A novel polymorphism in SEL1L confers susceptibility to Alzheimer's disease. Neurosci Lett 398, 5358.
  • 197
    Kahle PJ & Haass C (2004) How does parkin ligate ubiquitin to Parkinson's disease? EMBO Rep 5, 681685.
  • 198
    Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25, 302305.
  • 199
    Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y & Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105, 891902.
  • 200
    Imai Y, Soda M & Takahashi R (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275, 3566135664.
  • 201
    Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, et al. (2003) Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 12, 19451958.
  • 202
    Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, Harada T, Ichihara N, Wakana S, Kikuchi T & Wada K (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 23, 4751.
  • 203
    Liu Y, Fallon L, Lashuel HA, Liu Z & Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111, 209218.
  • 204
    Holtz WA & O'Malley KL (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278, 1936719377.
  • 205
    Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D & Greene LA (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 22, 1069010698.
  • 206
    Conn KJ, Gao W, McKee A, Lan MS, Ullman MD, Eisenhauer PB, Fine RE & Wells JM (2004) Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology. Brain Res 1022, 164172.
  • 207
    Thomas MYuZ, Dadgar N, Varambally SYuJ, Chinnaiyan AM & Lieberman AP (2005) The unfolded protein response modulates toxicity of the expanded glutamine androgen receptor. J Biol Chem 280, 2126421271.
  • 208
    Kobayashi T, Tanaka K, Inoue K & Kakizuka A (2002) Functional ATPase activity of p97/valosin-containing protein (VCP) is required for the quality control of endoplasmic reticulum in neuronally differentiated mammalian PC12 cells. J Biol Chem 277, 4735847365.
  • 209
    Southwood C & Gow A (2001) Molecular pathways of oligodendrocyte apoptosis revealed by mutations in the proteolipid protein gene. Microsc Res Tech 52, 700708.
  • 210
    Gow A & Lazzarini RA (1996) A cellular mechanism governing the severity of Pelizaeus-Merzbacher disease. Nat Genet 13, 422428.
  • 211
    Osaka H, Inoue K, Kawanishi C, Yamada Y, Onishi H, Sugiyama N, Suzuki K, Nezu A, Kimura S & Kosaka K (1995) MvaI polymorphism in the proteolipid protein (PLP) gene. Hum Genet 95, 461.
  • 212
    Southwood CM, Garbern J, Jiang W & Gow A (2002) The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 36, 585596.
  • 213
    Castilla J, Hetz C & Soto C (2004) Molecular mechanisms of neurotoxicity of pathological prion protein. Curr Mol Med 4, 397403.
  • 214
    Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J & Soto C (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22, 54355445.
  • 215
    Hetz C, Russelakis-Carneiro M, Walchli S, Carboni S, Vial-Knecht E, Maundrell K, Castilla J & Soto C (2005) The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J Neurosci 25, 27932802.
  • 216
    Kikuchi H, Almer G, Yamashita S, Guegan C, Nagai M, Xu Z, Sosunov AA, McKhann GM, 2nd & Przedborski S (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci USA 103, 60256030.
  • 217
    Tobisawa S, Hozumi Y, Arawaka S, Koyama S, Wada M, Nagai M, Aoki M, Itoyama Y, Goto K & Kato T (2003) Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem Biophys Res Commun 303, 496503.
  • 218
    Wootz H, Hansson I, Korhonen L, Napankangas U & Lindholm D (2004) Caspase-12 cleavage and increased oxidative stress during motoneuron degeneration in transgenic mouse model of ALS. Biochem Biophys Res Commun 322, 281286.
  • 219
    Tessitore APMM, Sano R, Ma Y, Mann L, Ingrassia A, Laywell ED, Steindler DA, Hendershot LM & d'Azzo A (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15, 753766.
  • 220
    Bown CD, Wang JF, Chen B & Young LT (2002) Regulation of ER stress proteins by valproate: therapeutic implications. Bipolar Disord 4, 145151.
  • 221
    Kakiuchi C, Ishiwata M, Nanko S, Kunugi H, Minabe Y, Nakamura K, Mori N, Fujii K, Umekage T, Tochigi M, et al. (2005) Functional polymorphisms of HSPA5: possible association with bipolar disorder. Biochem Biophys Res Commun 336, 11361143.
  • 222
    Kakiuchi C, Ishiwata M, Umekage T, Tochigi M, Kohda K, Sasaki T & Kato T (2004) Association of the XBP1–116C/G polymorphism with schizophrenia in the Japanese population. Psychiatry Clin Neurosci 58, 438440.
  • 223
    Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I, Tsujita T, Okazaki Y, Nanko S, Kunugi H, et al. (2003) Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 35, 171175.
  • 224
    Kusumi I, Masui T, Kakiuchi C, Suzuki K, Akimoto T, Hashimoto R, Kunugi H, Kato T & Koyama T (2005) Relationship between XBP1 genotype and personality traits assessed by TCI and NEO-FFI. Neurosci Lett 391, 710.
  • 225
    Cichon S, Buervenich S, Kirov G, Akula N, Dimitrova A, Green E, Schumacher J, Klopp N, Becker T, Ohlraun S, et al. (2004) Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nat Genet 36, 783784; author reply 784–785.
  • 226
    Shao L, Sun X, Xu L, Young LT & Wang JF (2006) Mood stabilizing drug lithium increases expression of endoplasmic reticulum stress proteins in primary cultured rat cerebral cortical cells. Life Sci 78, 13171323.
  • 227
    Araki E, Oyadomari S & Mori M (2003) Endoplasmic reticulum stress and diabetes mellitus. Intern Med 42, 714.
  • 228
    Harding HP & Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 (Suppl. 3), S455S461.
  • 229
    Oyadomari S, Araki E & Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7, 335345.
  • 230
    Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM & Julier C (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat Genet 25, 406409.
  • 231
    Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, Gannon M, Ma K, McNaughton K & Cavener DR (2002) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22, 38643874.
  • 232
    Scheuner D, Mierde DV, Song B, Flamez D, Creemers JW, Tsukamoto K, Ribick M, Schuit FC & Kaufman RJ (2005) Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med 11, 757764.
  • 233
    Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S & Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7, 11651176.
  • 234
    Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E & Mori M (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 109, 525532.
  • 235
    Allen JR, Nguyen LX, Sargent KE, Lipson KL, Hackett A & Urano F (2004) High ER stress in beta-cells stimulates intracellular degradation of misfolded insulin. Biochem Biophys Res Commun 324, 166170.
  • 236
    Nozaki J, Kubota H, Yoshida H, Naitoh M, Goji J, Yoshinaga T, Mori K, Koizumi A & Nagata K (2004) The endoplasmic reticulum stress response is stimulated through the continuous activation of transcription factors ATF6 and XBP1 in Ins2+/Akita pancreatic beta cells. Genes Cells 9, 261270.
  • 237
    Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, MacAuley A, Goodman AG, LeBoeuf RC & Katze MG (2005) Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 54, 10741081.
  • 238
    Fonseca SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR, Oka Y & Urano F (2005) WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J Biol Chem 280, 3960939615.
  • 239
    Yamada T, Ishihara H, Tamura A, Takahashi R, Yamaguchi S, Takei D, Tokita A, Satake C, Tashiro F, Katagiri H, et al. (2006) WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells. Hum Mol Genet 15, 16001609.
  • 240
    Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH & Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457461.
  • 241
    Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, Ozawa K, Ogawa S, Hori M, Yamasaki Y, et al. (2005) Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 280, 847851.
  • 242
    Thameem F, Farook VS, Bogardus C & Prochazka M (2006) Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians. Diabetes 55, 839842.
  • 243
    Austin RC, Lentz SR & Werstuck GH (2004) Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11 (Suppl. 1), S56S64.
  • 244
    Lawrence de Koning AB, Werstuck GH, Zhou J & Austin RC (2003) Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem 36, 431441.
  • 245
    Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, et al. (2001) Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107, 12631273.
  • 246
    Zhou J, Werstuck GH, Lhotak S, de Koning AB, Sood SK, Hossain GS, Moller J, Ritskes-Hoitinga M, Falk E, Dayal S, et al. (2004) Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation 110, 207213.
  • 247
    Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y, Davis RJ, Flavell R & Tabas I (2005) Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol 171, 6173.
  • 248
    Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, et al. (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5, 781792.
  • 249
    Han S, Liang CP, DeVries-Seimon T, Ranalletta M, Welch CL, Collins-Fletcher K, Accili D, Tabas I & Tall AR (2006) Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab 3, 257266.
  • 250
    Lin W, Harding HP, Ron D & Popko B (2005) Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. J Cell Biol 169, 603612.
  • 251
    Endo M, Mori M, Akira S & Gotoh T (2006) C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. J Immunol 176, 62456253.
  • 252
    Yamazaki T, Muramoto M, Oe T, Morikawa N, Okitsu O, Nagashima T, Nishimura S, Katayama Y & Kita Y (2006) Diclofenac, a non-steroidal anti-inflammatory drug, suppresses apoptosis induced by endoplasmic reticulum stresses by inhibiting caspase signaling. Neuropharmacology 50, 558567.
  • 253
    Gotoh T & Mori M (1999) Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J Cell Biol 144, 427434.
  • 254
    Gotoh T & Mori M (2006) Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol 26, 14391446.
  • 255
    Gotoh T, Oyadomari S, Mori K & Mori M (2002) Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J Biol Chem 277, 1234312350.
  • 256
    Gotoh T, Terada K, Oyadomari S & Mori M (2004) hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11, 390402.
  • 257
    Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E & Mori M (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA 98, 1084510850.
  • 258
    Purcell AW, Todd A, Kinoshita G, Lynch TA, Keech CL, Gething MJ & Gordon TP (2003) Association of stress proteins with autoantigens: a possible mechanism for triggering autoimmunity? Clin Exp Immunol 132, 193200.
  • 259
    Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, Chang J, Dwivedi S, Mitsak M, Chen YW, et al. (2005) Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 52, 18241835.
  • 260
    Yamasaki S, Yagishita N, Tsuchimochi K, Nishioka K & Nakajima T (2005) Rheumatoid arthritis as a hyper-endoplasmic-reticulum-associated degradation disease. Arthritis Res Ther 7, 181186.
  • 261
    Rissanen A, Sivenius J & Jolkkonen J (2006) Prolonged bihemispheric alterations in unfolded protein response related gene expression after experimental stroke. Brain Res 1087, 6066.
  • 262
    Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y & Mori M (2004) Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 11, 403415.
  • 263
    Azfer A, Niu J, Rogers LM, Adamski FM & Kolattukudy PE (2006) Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 291, H1411H1420.
  • 264
    Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, et al. (2004) Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110, 705712.
  • 265
    Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, et al. (2004) Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Mol Cell Biol 24, 80078017.
  • 266
    Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA & Glembotski CC (2006) Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res 98, 11861193.
  • 267
    Ji C & Kaplowitz N (2006) ER stress: can the liver cope? J Hepatol 45, 321333.
  • 268
    Ji C & Kaplowitz N (2004) Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J Gastroenterol 10, 16991708.
  • 269
    Kaplowitz N & Ji C (2006) Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum. J Gastroenterol Hepatol 21, S7S9.
  • 270
    Ji C & Kaplowitz N (2003) Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 124, 14881499.
  • 271
    Ji C, Mehrian-Shai R, Chan C, Hsu YH & Kaplowitz N (2005) Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res 29, 14961503.
  • 272
    Arai M, Kondoh N, Imazeki N, Hada A, Hatsuse K, Kimura F, Matsubara O, Mori K, Wakatsuki T & Yamamoto M (2006) Transformation-associated gene regulation by ATF6alpha during hepatocarcinogenesis. FEBS Lett 580, 184190.
  • 273
    Chiang PC, Chien CL, Pan SL, Chen WP, Teng CM, Shen YC & Guh JH (2005) Induction of endoplasmic reticulum stress and apoptosis by a marine prostanoid in human hepatocellular carcinoma. J Hepatol 43, 679686.
  • 274
    Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O, et al. (2003) Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38, 605614.
  • 275
    Lorz C, Justo P, Sanz A, Subira D, Egido J & Ortiz A (2004) Paracetamol-induced renal tubular injury: a role for ER stress. J Am Soc Nephrol 15, 380389.
  • 276
    Cybulsky AV, Takano T, Papillon J & Bijian K (2005) Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem 280, 2439624403.
  • 277
    Inagi R, Nangaku M, Onogi H, Ueyama H, Kitao Y, Nakazato K, Ogawa S, Kurokawa K, Couser WG & Miyata T (2005) Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int 68, 26392650.
  • 278
    Miyata T, Inagi R, Sugiyama S & Usuda N (2005) Serpinopathy and endoplasmic reticulum stress. Med Mol Morph 38, 7378.
  • 279
    Asmellash S, Stevens JL & Ichimura T (2005) Modulating the endoplasmic reticulum stress response with trans-4,5-dihydroxy-1,2-dithiane prevents chemically induced renal injury in vivo. Toxicol Sci 88, 576584.
  • 280
    Wang HC, Chang WT, Chang WW, Wu HC, Huang W, Lei HY, Lai MD, Fausto N & Su IJ (2005) Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 41, 761770.
  • 281
    Wang HC, Wu HC, Chen CF, Fausto N, Lei HY & Su IJ (2003) Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. Am J Pathol 163, 24412449.
  • 282
    Benali-Furet NL, Chami M, Houel L, De Giorgi F, Vernejoul F, Lagorce D, Buscail L, Bartenschlager R, Ichas F, Rizzuto R, et al. (2005) Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 24, 49214933.
  • 283
    Huang IC, Chien CY, Huang CR & Lo SJ (2006) Induction of hepatitis D virus large antigen translocation to the cytoplasm by hepatitis B virus surface antigens correlates with endoplasmic reticulum stress and NF-kappaB activation. J Gen Virol 87, 17151723.
  • 284
    Yu CY, Hsu YW, Liao CL & Lin YL (2006) Flavivirus infection activates XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol 80, 1186811880.
  • 285
    Williams BL & Lipkin WI (2006) Endoplasmic reticulum stress and neurodegeneration in rats neonatally infected with borna disease virus. J Virol 80, 86138626.
  • 286
    Dimcheff DE, Volkert LG, Li Y, DeLucia AL & Lynch WP (2006) Gene expression profiling of microglia infected by a highly neurovirulent murine leukemia virus: implications for neuropathogenesis. Retrovirology 3, 26.
  • 287
    Bergeron A, Jorquera R, Orejuela D & Tanguay RM (2006) Involvement of endoplasmic reticulum stress in hereditary tyrosinemia type I. J Biol Chem 281, 53295334.
  • 288
    Berger EG & Roth J (1997) The Golgi Apparatus. Birkhauser-Verlag, Basel.
  • 289
    Hicks SW & Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744, 406414.