• 1
    Sato N, Nakayama M & Hase T (2001) The 70-kDa major DNA-compacting protein of the chloroplast nucleoid is sulfite reductase. FEBS Lett 487, 347350.
  • 2
    Chi-Ham CL, Keaton MA, Cannon GC & Heinhorst S (2002) The DNA-compacting protein DCP68 from soybean chloroplasts is ferredoxin: sulfite reductase and co-localizes with the organellar nucleoid. Plant Mol Biol 49, 621630.
  • 3
    Kuroiwa T (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of prganelle nuclei. Int Rev Cytol 128, 162.
  • 4
    Nakayama M, Akashi T & Hase T (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82, 2732.
  • 5
    Brunold C & Suter M (1989) Localization of enzymes of assimilatory sulfate reduction in pea roots. Planta 179, 228234.
  • 6
    Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3, 188195.
  • 7
    Winter H, Robinson DG & Heldt HW (1994) Subcellular volumes and metabolite concentrations in spinach leaves. Planta 193, 530535.
  • 8
    Hashimoto H (1985) Changes in distribution of nucleoids in developing and dividing chloroplasts and etioplasts of Arena sativa. Protoplasma 127, 119127.
  • 9
    Sato N (2001) Was the evolution of plastid genetic machinery discontinuous? Trends Plant Sci 6, 151155.
  • 10
    Sato N, Misumi O, Shinada Y, Sasaki M & Yoine M (1997) Dynamics of localization and protein composition of plastid nucleoids in light-grown pea seedlings. Protoplasma 200, 163173.
  • 11
    Sato N, Rolland N, Block MA & Joyard J (1999) Do plastid envelope membranes play a role in the expression of the plastid genome? Biochimie 81, 619629.
  • 12
    Sato N, Sekine K, Kabeya Y, Ehira S, Onuma M & Ohta N (2004) Discontinuous evolution of plastid genomic machinery: Radical replacement of major DNA-binding proteins. Endocytobiosis Cell Res 15, 286293.
  • 13
    Sato N, Terasawa K, Miyajima K & Kabeya Y (2003) Organization, developmental dynamics, and evolution of plastid nucleoids. Int Rev Cytol 232, 217262.
  • 14
    Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A & Sato F (2004) The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220, 97104.
  • 15
    Kato Y, Yamamoto Y, Murakami S & Sato F (2005) Post-translational regulation of CND41 protease activity in senescent tobacco leaves. Planta 222, 643651.
  • 16
    Murakami S, Kondo Y, Nakano T & Sato F (2000) Protease activity of CND41, a chloroplast nucleoid DNA-binding protein, isolated from cultured tobacco cells. FEBS Lett 468, 1518.
  • 17
    Nakano T, Murakami S, Shoji T, Yoshida S, Yamada Y & Sato F (1997) A novel protein with DNA binding activity from tobacco chloroplast nucleoids. Plant Cell 9, 16731682.
  • 18
    Sato N, Albrieux C, Joyard J, Douce R & Kuroiwa T (1993) Detection and characterization of a plastid envelope DNA-binding protein which may anchor plastid nucleoids. EMBO J 12, 555561.
  • 19
    Sato N, Ohshima K, Watanabe A, Ohta N, Nishiyama Y, Joyard J & Douce R (1998) Molecular characterization of the PEND protein, a novel bZIP protein present in the envelope membrane that is the site of nucleoid replication in developing plastids. Plant Cell 10, 859872.
  • 20
    Sato N & Ohta N (2001) DNA-binding specificity and dimerization of the DNA-binding domain of the PEND protein in the chloroplast envelope membrane. Nucleic Acids Res 29, 22442250.
  • 21
    Terasawa K & Sato N (2005) Occurrence and characterization of PEND proteins in angiosperms. J Plant Res 118, 111119.
  • 22
    Jeong SY, Peffer N & Meier I (2004) Phosphorylation by protein kinase CKII modulates the DNA-binding activity of a chloroplast nucleoid-associated protein. Planta 219, 298302.
  • 23
    Jeong SY, Rose A & Meier I (2003) MFP1 is a thylakoid-associated, nucleoid-binding protein with a coiled-coil structure. Nucleic Acids Res 31, 51755185.
  • 24
    Pfalz J, Liere K, Kandlbinder A, Dietz K-J & Oelmüller R (2005) pTAC2-6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18, 176197.
  • 25
    Phinney BS & Thelen JJ (2005) Proteomic characterization of a triton-insoluble fraction from chloroplasts defines a novel group of proteins associated with macromolecular structures. J Proteome Res 4, 497506.
  • 26
    Cannon GC, Ward LN, Case CI & Heinhorst S (1999) The 68 kDa DNA compacting nucleoid protein from soybean chloroplasts inhibits DNA synthesis in vitro. Plant Mol Biol 39, 835845.
  • 27
    Sekine K, Hase T & Sato N (2002) Reversible DNA compaction by sulfite reductase regulates transcriptional activity of chloroplast nucleoids. J Biol Chem 277, 2439924404.
  • 28
    Crane B, Siegel L & Getzoff E (1995) Sulfite reductase structure at 1.6 Å: evolution and catalysis for reduction of inorganic anions. Science 270, 5967.
  • 29
    Yonekura-Sakakibara K, Ashikari T, Tanaka Y, Kusumi T-A & Hase T (1998) Molecular characterization of tobacco sulfite reductase: enzyme purification, gene cloning, and gene expression analysis. J Biochem (Tokyo) 124, 615621.
  • 30
    Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T & Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize. Plant Physiol 122, 887894.
  • 31
    Borka C, Schwennb JD & Hell R (1998) Isolation and characterization of a gene for assimilatory sulfite reductase from Arabidopsis thaliana. Gene 212, 147153.
  • 32
    Ideguchi T, Akashi T, Onda Y & Hase T (1995) cDNA cloning and functional expression of ferredoxin-dependent sulfite reductase from maize in E. coli cells. In Photosynthesis: from Light to Biosphere, Vol II (Mathis P, ed), pp. 713716. Kluwer Academic Publishers, Dordrecht.
  • 33
    Saitoh T, Ikegami T, Nakayama M, Teshima K, Akutsu H & Hase T (2006) NMR study of the electron transfer complex of plant ferredoxin and sulfite reductase: mapping the interaction sites of ferredoxin. J Biol Chem 281, 1048210488.
  • 34
    Sato N (2006) Origin and evolution of plastids: genomic view on the unification and diversity of plastids. In The Structure and Function of Plastids) (Wise RR & Hoober JK, eds), pp. 75102. Springer, Dordrecht.
  • 35
    Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima S-y, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653657.
  • 36
    Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796815.
  • 37
    International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436, 793800.
  • 38
    Link G (2003) Redox regulation of chloroplast transcription. Antioxid Redox Signal 5, 7987.
  • 39
    Pfannschmidt T, Nilsson A & Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397, 625628.
  • 40
    Wu M, Nie ZQ & Yang J (1989) The 18-kD protein that binds to the chloroplast DNA replicative origin is an iron–sulfur protein related to a subunit of NADH dehydrogenase. Plant Cell 1, 551557.
  • 41
    Chen XJ & Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6, 815825.
  • 42
    Chen XJ, Wang X, Kaufman BA & Butow RA (2005) Aconitase couples metabokic regulation to mitochondrial DNA maintenamce. Science 307, 714717.
  • 43
    Kaufman BA, Newman SM, Hallberg RL, Slaughter CA, Perlman PS & Butow RA (2000) In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc Natl Acad Sci USA 97, 77727777.
  • 44
    Sato H, Tachifuji A, Tamura M & Miyakawa I (2002) Identification of the YMN-1 antigen protein and biochemical analyses of protein components in the mitochondrial nucleoid fraction of the yeast Saccharomyces cerevisiae. Protoplasma 219, 5158.
  • 45
    Bogenhagen DF, Wang Y, Shen EL & Kobayashi R (2003) Protein components of mitochondrial DNA nucleoids in higher eukaryotes. Mol Cell Proteomics 2, 12051216.
  • 46
    Wang Y & Bogenhagen DF (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281, 2579125802.
  • 47
    McCammon MT, Epstein CB, Przybyla-Zawislak B, McAlister-Henn L & Butow RA (2003) Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol Biol Cell 14, 958972.
  • 48
    Hirling H, Henderson BR & Kühn LC (1994) Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J 13, 453461.
  • 49
    Shadel GS (2005) Mitochondrial DNA, aconitase ‘wraps’ it up. Trends Biochem Sci 30, 294296.
  • 50
    Foyer CH & Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119, 355364.
  • 51
    Laloi C, Przybyla D & Apel K (2006) A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana. J Exp Bot 57, 17191724.
  • 52
    Sato N (2000) siseq: manipulation of multiple sequence and large database files for common platforms. Bioinformatics 16, 180181.
  • 53
    Edgar RC (2004) muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 17921797.
  • 54
    Jobb G, von Haeseler A & Strimmer K (2004) treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4, 18.
  • 55
    Kumar S, Tamara K & Nei M (2004) mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150163.
  • 56
    Perrière G & Gouy M (1996) www-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 368369.
  • 57
    Crestfield AM, Moore S & Stein WH (1963) The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem 238, 622627.
  • 58
    Hanke GT, Okutani S, Satomi Y, Takao T, Suzuki A & Hase T (2005) Multiple iso-proteins of FNR in Arabidopsis: evidence for different contributions to chloroplast function and nitrogen assimilation. Plant Cell Environ 28, 11461157.
  • 59
    Sasaki N, Kuroiwa H, Nishitani C, Takano H, Higashiyama T, Kobayashi T, Shirai Y, Sakai A, Kawano S, Murakami-Murofushi K et al. (2003) Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and causes intense chromatin condensation without suppressing DNA functions. Mol Biol Cell 14, 47584769.
  • 60
    von Arb C & Brunold C (1983) Measurement of ferredoxin-dependent sulfite reductase activity in crude extracts from leaves using O-acetyl-l-serine sulfhydrylase in a coupled assay system to measure the sulfide formed. Anal Biochem 131, 198204.
  • 61
    Matsumura T, Sakakibara H, Nakano R, Kimata Y, Sugiyama T & Hase T (1997) A nitrate-inducible ferredoxin in maize roots: genomic organization and differential expression of two nonphotosynthetic ferredoxin isoproteins. Plant Physiol 114, 653660.
  • 62
    Sakai A, Saito C, Inada N & Kuroiwa T (1998) Transcriptional activities of the chloroplast-nuclei and proplastid-nuclei isolated from tobacco exhibit different sensitivities to tagetitoxin: implication of the presence of distinct RNA polymerases. Plant Cell Physiol 39, 928934.