SEARCH

SEARCH BY CITATION

References

  • 1
    Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115, 20472058.
  • 2
    Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MS, Ford RC & Ashcroft FM (2005) 3-D structural and functional characterization of the purified KATP channel complex Kir6-2-Sur1 EMBO J 24, 41664175.
  • 3
    Tucker SJ, Gribble FM, Zhao C, Trapp S & Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387, 179183.
  • 4
    Nichols CG, Shyng SL, Nestorowicz A, Glaser B, Clement JPT, Gonzalez G, Aguilar-Bryan L, Permutt MA & Bryan J (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272, 17851787.
  • 5
    Gribble FM, Tucker SJ & Ashcroft FM (1997) The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J 16, 11451152.
  • 6
    Gribble FM, Tucker SJ, Haug T & Ashcroft FM (1998) MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit. Proc Natl Acad Sci USA 95, 71857190.
  • 7
    Bryan J, Munoz A, Zhang X, Dufer M, Drews G, Krippeit-Drews P & Aguilar-Bryan L (2007) ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch 453, 703718.
  • 8
    Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ & Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10, 139149.
  • 9
    Locher KP, Lee AT & Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 10911098.
  • 10
    Dawson RJ & Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 7108, 156157.
  • 11
    Hollenstein K, Frei DC & Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 7132, 213216.
  • 12
    Campbell JD, Sansom MS & Ashcroft FM (2003) Potassium channel regulation. EMBO Rep 4, 10381042.
  • 13
    Campbell JD, Proks P, Lippiat JD, Sansom MS & Ashcroft FM (2004) Identification of a functionally important negatively charged residue within the second catalytic site of the SUR1 nucleotide-binding domains. Diabetes 53 (Suppl. 3), S123S127.
  • 14
    Vergani P, Lockless SW, Nairn AC & Gadsby DC (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433, 876880.
  • 15
    Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JPT, Boyd AE 3rd, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J & Nelson DA (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268, 423426.
  • 16
    Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y & Kurachi Y (1996) A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem 271, 2432124324.
  • 17
    Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J & Seino S (1996) A family of sulphonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16, 10111017.
  • 18
    Tammaro P & Ashcroft FM (2006) Functional effects of naturally occurring KNCJ11 mutations causing neonatal diabetes on cloned cardiac KATP channels. J Physiol 571, 314.
  • 19
    Masia R, Enkvetchakul D & Nichols CG (2005) Differential nucleotide regulation of KATP channels by SUR1 and SUR2A. J Mol Cell Cardiol 39, 491501.
  • 20
    Zingman LV, Alekseev AE, Bienengraeber M, Hodgson D, Karger AB, Dzeja PP & Terzic A (2001) Signaling in channel/enzyme multimers: ATPase transitions in SUR module gate ATP-sensitive K+ conductance. Neuron 31, 233245.
  • 21
    Zingman LV, Hodgson DM, Bienengraeber M, Karger AB, Kathmann EC, Alekseev AE & Terzic A (2002) Tandem function of nucleotide binding domains confers competence to sulfonylurea receptor in gating ATP-sensitive K+ channels. J Biol Chem 277, 1420614210.
  • 22
    Matsuo M, Tanabe K, Kioka N, Amachi T & Ueda K (2000) Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes, SUR1, SUR2A, and SUR2B. J Biol Chem 275, 2875728763.
  • 23
    Mikhailov MV & Ashcroft SJ (2000) Interactions of the sulfonylurea receptor 1 subunit in the molecular assembly of beta-cell KATP channels. J Biol Chem 275, 33603364.
  • 24
    Hough E, Mair L, Mackenzie W & Sivaprasadarao A (2002) Expression, purification, and evidence for the interaction of the two nucleotide-binding folds of the sulphonylurea receptor. Biochem Biophys Res Commun 294, 191197.
  • 25
    Mikhailov MV, Mikhailova EA & Ashcroft SJ (2000) Investigation of the molecular assembly of beta-cell K (ATP) channels. FEBS Lett 482, 5964.
  • 26
    Shevchenko A & Shevchenko A (2001) Evaluation of the efficiency of in-gel digestion of proteins by peptide isotopic labeling and MALDI mass spectrometry. Anal Biochem 296, 279283.
  • 27
    Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M & Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116, 190199.
  • 28
    Frank J (1990) Classification of macromolecular assemblies studied as ‘single particles’. Q Rev Biophys 23, 281329.
  • 29
    Chifflet S, Torriglia A, Chiesa R & Tolosa S (1988) A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal Biochem 168, 14.
  • 30
    Clausen JD, McIntosh DB, Woolley DG, Anthonisen AN, Vilsen B & Andersen JP (2006) Asparagine 706 and glutamate 183 at the catalytic site of sarcoplasmic reticulum Ca2+-ATPase play critical but distinct roles in E2 states. J Biol Chem 281, 94719481.
  • 31
    Cheng Y & Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22(23), 30993108.
  • 32
    Trapp S, Tucker SJ & Ashcroft FM (1997) Activation and inhibition of K-ATP currents by guanine nucleotides is mediated by different channel subunits. Proc Natl Acad Sci USA 94, 88728877.
  • 33
    Sankaran B, Bhagat S & Senior AE (1997) Inhibition of P-glycoprotein ATPase activity by beryllium fluoride. Biochemistry 36, 68476853.
  • 34
    Werber MM, Peyser YM & Muhlrad A (1992) Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1-nucleotide complexes. Biochemistry 31, 71907197.
  • 35
    Kidd JF, Ramjeesingh M, Stratford F, Huan LJ & Bear CE (2004) A heteromeric complex of the two nucleotide binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) mediates ATPase activity. J Biol Chem 279, 4166441669.
  • 36
    Ramaen O, Sizun C, Pamlard O, Jacquet E & Lallemand JY (2005) Attempts to characterize the NBD heterodimer of MRP1: transient complex formation involves Gly771 of the ABC signature sequence but does not enhance the intrinsic ATPase activity. Biochem J 391, 481490.
  • 37
    Chang XB, Hou YX & Riordan JR (1998) Stimulation of ATPase activity of purified multidrug resistance-associated protein by nucleoside diphosphates. J Biol Chem 273, 2384423848.
  • 38
    Mao Q, Leslie EM, Deeley RG & Cole SP (1999) ATPase activity of purified and reconstituted multidrug resistance protein MRP1 from drug-selected H69AR cells. Biochim Biophys Acta 1461, 6982.
  • 39
    Rosenberg MF, Kamis AB, Aleksandrov LA, Ford RC & Riordan JR (2004) Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 279, 3905139057.
  • 40
    Urbatsch IL, al-Shawi MK & Senior AE (1994) Characterization of the ATPase activity of purified Chinese hamster P-glycoprotein. Biochemistry 33, 70697076.
  • 41
    Callaghan R, Berridge G, Ferry DR & Higgins CF (1997) The functional purification of P-glycoprotein is dependent on maintenance of a lipid–protein interface. Biochim Biophys Acta 1328, 109124.
  • 42
    Sun H, Molday RS & Nathans J (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 274, 82698281.
  • 43
    Schwappach B, Zerangue N, Jan YN & Jan LY (2000) Molecular basis for K(ATP) assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron 26, 155167.
  • 44
    Ramjeesingh M, Li C, Garami E, Huan L-J, Galley K, Wang Y & Bear CE (1999) Walker mutations reveal loose relationship between catalytic and channel-gating activites of purified CFTR (Cystic Fibrosis Transmembrane Conductance Regulator). Biochemsitry 38, 14631468.
  • 45
    Bienengraeber M, Alekseev AE, Abraham MR, Carrasco AJ, Moreau C, Vivaudou M, Dzeja PP & Terzic A (2000) ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex. FASEB J 14, 19431952.
  • 46
    Annereau JP, Ko YH & Pdersen PL (2003) Cystic fibrosis transmembrane conductance regulator: the NBF1+R (nucleotide-dinding fold 1 and regulatory domain) segment acting alone catalyses a Co2+/Mn2+/Mg2-ATPase activity markedly inhibited by both Cd2+ and the transition-state analogue orthovanadate. Biochem J 371, 451462.
  • 47
    Randak C & Welsh MJ (2003) An intrinsic adenylate kinase activity regulates gating of the ABC transporter CFTR. Cell 115, 837850.
  • 48
    Ueda K, Inagaki H & Sieno S (1997) MgADP antagonism to Mg2+-independent ATP binding of sulfonylurea receptor SUR1. J Biol Chem 272, 2298322986.
  • 49
    Stratford FL, Ramjeesingh M, Cheung JC, Huan LJ & Bear CE (2007) The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1–NBD2 heterodimer. Biochem J 401, 581586.
  • 50
    Randak CO & Welsh MJ (2005) Adenylate kinase activity in ABC transporters. J Biol Chem 280, 3438534388.
  • 51
    Randak C, Neth P, Auerswald EA, Eckerskorn C, Assfalg-Machleidt I & Machleidt W (1997) A recombinant polypeptide model of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator functions as an active ATPase, GTPase and adenylate kinase. FEBS Lett 410(2–3), 180186.
  • 52
    Ueda K, Inagaki N & Seino S (1997) MgADP antagonism to Mg2+-independent ATP binding of the sulfonylurea receptor SUR1. J Biol Chem 272, 2298322986.
  • 53
    Nishida M & MacKinnon R (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111, 957965.
  • 54
    Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA & Choe S (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8, 279287.
  • 55
    Biswas-Fiss EE (2006) Interaction of the nucleotide binding domains and regulation of the ATPase activity of the human retina specific ABC transporter, ABCR. Biochemistry 45, 38133823.