• 1
    Szankasi P & Smith GR (1995) A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science 267, 11661169.
  • 2
    Harada YN, Shiomi N, Koike M, Ikawa M, Okabe M, Hirota S, Kitamura Y, Kitagawa M, Matsunaga T, Nikaido O et al. (1999) Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol Cell Biol 19, 23662372.
  • 3
    Larsen E, Gran C, Saether BE, Seeberg E & Klungland A (2003) Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage. Mol Cell Biol 23, 53465353.
  • 4
    Tian M, Jones DA, Smith M, Shinkura R & Alt FW (2004) Deficiency in the nuclease activity of xeroderma pigmentosum G in mice leads to hypersensitivity to UV irradiation. Mol Cell Biol 24, 22372242.
  • 5
    Bardwell PD, Woo CJ, Wei K, Li Z, Martin A, Sack SZ, Parris T, Edelmann W & Scharff MD (2004) Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice. Nat Immunol 5, 224229.
  • 6
    Wei K, Clark AB, Wong E, Kane MF, Mazur DJ, Parris T, Kolas NK, Russell R, Hou H, Kneitz B (2003) Inactivation of exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 17, 603614.
  • 7
    Ishikawa G, Kanai Y, Takata K, Takeuchi R, Shimanouchi K, Ruike T, Furukawa T, Kimura S & Sakaguchi K (2004) DmGEN, a novel RAD2 family endo-exonuclease from Drosophila melanogaster. Nucleic Acids Res 32, 62516259.
  • 8
    Furukawa T, Kimura S, Ishibashi T, Mori Y, Hashimoto J & Sakaguchi K (2003) OsSEND-1: a new RAD2 nuclease family member in higher plants. Plant Mol Biol 51, 5970.
  • 9
    Moritoh S, Miki D, Akiyama M, Kawahara M, Izawa T, Maki H & Shimamoto K (2005) RNAi-mediated silencing of OsGEN-L (OsGEN-like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Plant Cell Physiol 46, 699715.
  • 10
    O'Donovan A, Davies AA, Moggs JG, West SC & Wood RD (1994) XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371, 432435.
  • 11
    Clarkson SG (2003) The XPG story. Biochimie 85, 11131121.
  • 12
    Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19, 233240.
  • 13
    Bibikova M, Wu B, Chi E, Kim KH, Trautman JK & Carroll D (1998) Characterization of FEN-1 from Xenopus laevis. cDNA cloning and role in DNA metabolism. J Biol Chem 273, 3422234229.
  • 14
    Shen B, Singh P, Liu R, Qiu J, Zheng L, Finger LD & Alas S (2005) Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays 27, 717729.
  • 15
    Genschel J, Bazemore LR & Modrich P (2002) Human exonuclease I is required for 5′- and 3′ mismatch repair. J Biol Chem 277, 1330213311.
  • 16
    Bedale WA, Inman RB & Cox MM (1993) A reverse DNA strand exchange mediated by recA protein and exonuclease I. The generation of apparent DNA strand breaks by recA protein is explained. J Biol Chem 268, 1500415016.
  • 17
    Lee BI & Wilson DM (1999) The RAD2 domain of human exonuclease 1 exhibits 5′- to 3′ exonuclease and flap structure-specific endonuclease activities. J Biol Chem 274, 3776337769.
  • 18
    Lee BI, Nguyen LH, Barsky D, Fernandes M & Wilson DM (2002) Molecular interactions of human Exo1 with DNA. Nucleic Acids Res 30, 942949.
  • 19
    Dunand-Sauthier I, Hohl M, Thorel F, Jaquier-Gubler P, Clarkson SG & Scharer OD (2005) The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J Biol Chem 280, 70307037.
  • 20
    Qiu J, Liu R, Chapados BR, Sherman M, Tainer JA & Shen B (2004) Interaction interface of human flap endonuclease-1 with its DNA substrates. J Biol Chem 279, 2439424402.
  • 21
    Shen B, Nolan JP, Sklar LA & Park MS (1997) Functional analysis of point mutations in human flap endonuclease-1 active site. Nucleic Acids Res 25, 33323338.
  • 22
    Harrington JJ & Lieber MR (1994) The characterization of a mammalian DNA structure-specific endonuclease. EMBO J 13, 12351246.
  • 23
    Murante RS, Rust L & Bambara RA (1995) Calf 5′- to 3′ exo/endonuclease must slide from a 5′ end of the substrate to perform structure-specific cleavage. J Biol Chem 270, 3037730383.
  • 24
    Liu R, Qiu J, Finger LD, Zheng L & Shen B (2006) The DNA–protein interaction modes of FEN-1 with gap substrates and their implication in preventing duplication mutations. Nucleic Acids Res 34, 17721784.
  • 25
    Bownes M (1975) A photographic study of development in the living embryo of Drosophila melanogaster. J Embryol Exp Morphol 33, 789801.
  • 26
    Yamaguchi M, Date T & Matsukage A (1991) Distribution of PCNA in Drosophila embryo during nuclear division cycles. J Cell Sci 100, 729733.
  • 27
    Constantinou A, Gunz D, Evans E, Lalle P, Bates PA, Wood RD & Clarkson SG (1999) Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem 274, 56375648.
  • 28
    Hohl M, Dunand-Sauthier I, Staresincic L, Jaquier-Gubler P, Thorel F, Modesti M, Clarkson SG & Scharer OD (2007) Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity. Nucleic Acids Res 35, 30533063.
  • 29
    Rossi ML, Purohit V, Brandt PD & Bambara RA (2006) Lagging strand replication proteins in genome stability and DNA repair. Chem Rev 106, 453473.
  • 30
    Kimura S, Tahira Y, Ishibashi T, Mori Y, Mori T, Hashimoto J & Sakaguchi K (2004) DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Res 32, 27602767.
  • 31
    Lopes M, Foiani M & Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21, 1527.
  • 32
    Michel B (2000) Replication fork arrest and DNA recombination. Trends Biochem Sci 25, 173178.
  • 33
    Mazin AV, Zaitseva E, Sung P & Kowalczykowski SC (2000) Tailed duplex DNA is the preferred substrate for Rad51 protein-mediated homologous pairing. EMBO J 19, 11481156.
  • 34
    Kimura S, Ueda T, Hatanaka M, Takenouchi M, Hashimoto J & Sakaguchi K (2000) Plant homologue of flap endonuclease-1: molecular cloning, characterization, and evidence of expression in meristematic tissues. Plant Mol Biol 42, 415427.
  • 35
    Boddy MN, Gaillard PH, McDonald WH, Shanahan P & Yates R (2001) Mus81–Eme1 are essential components of a Holliday junction resolvase. Cell 107, 537548.
  • 36
    Ashburner M (1989) Antibody staining of embryos. Drosophila, Laboratory Manual, pp. 214216. Cold Spring Harbor Press, New York, NY.
  • 37
    Takata K, Ishikawa G, Hirose F & Sakaguchi K (2002) Drosophila damage-specific DNA-binding protein 1 (D-DDB1) is controlled by the DRE/DREF system. Nucleic Acids Res 30, 37953808.