SEARCH

SEARCH BY CITATION

References

  • 1
    Hilario E & Gogarten JP (1998) The prokaryote-to-eucaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. J Mol Evol 46, 703715.
  • 2
    Gogarten JP & Taiz L (1992) Evolution of proton pumping ATPases − rooting the tree of life. Photosynth Res 33, 137146.
  • 3
    Nelson N (1992) Evolution of organellar proton-ATPases. Biochim Biophys Acta 1100, 109124.
  • 4
    Cross RL & Müller V (2004) The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP stoichiometry. FEBS Lett 576, 14.
  • 5
    Pedersen PL, Ko YH & Hong S (2000) ATP synthases in the year 2000: evolving views about the structures of these remarkable enzyme complexes. J Bioenerg Biomembr 32, 325332.
  • 6
    Domgall I, Venzke D, Lüttge U, Ratajczak R & Böttcher B (2002) Three-dimensional map of a plant V-ATPase based on electron microscopy. J Biol Chem 277, 1311513121.
  • 7
    Karrasch S & Walker JE (1999) Novel features in the structure of bovine ATP synthase. J Mol Biol 290, 379384.
  • 8
    Böttcher B & Gräber P (2000) The structure of the H+-ATP synthase from chloroplasts and its subcomplexes as revealed by electron microscopy. Biochim Biophys Acta 1458, 404416.
  • 9
    Wilkens S & Capaldi RA (1998) Electron microscopic evidence of two stalks linking the F1 and FO parts of the Escherichia coli ATP synthase. Biochim Biophys Acta 1365, 9397.
  • 10
    Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A & Konings WN (1997) Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential for rotational catalysis. Proc Natl Acad Sci USA 94, 1429114293.
  • 11
    Coskun Ü, Radermacher M, Müller V, Ruiz T & Grüber G (2004) Three-dimensional organization of the archaeal A1-ATPase from Methanosarcina mazei Gö1. J Biol Chem 279, 2275922764.
  • 12
    Leslie AG & Walker JE (2000) Structural model of F1-ATPase and the implications for rotary catalysis. Philos Trans R Soc Lond B Biol Sci 355, 465471.
  • 13
    Schäfer G, Engelhard M & Müller V (1999) Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63, 570620.
  • 14
    Forgac M (2000) Structure, mechanism and regulation of the clathrin-coated vesicle and yeast vacuolar H+-ATPases. J Exp Biol 203, 7180.
  • 15
    Senior AE, Nadanaciva S & Weber J (2000) Rate acceleration of ATP hydrolysis by A1AO-ATP synthase. J Exp Biol 203 (Part 1), 3540.
  • 16
    Futai M, Omote H & Maeda M (1995) Escherichia coli H+-ATPase (ATP synthase): catalytic site and roles of subunit interactions in energy coupling. Biochem Soc Trans 23, 785789.
  • 17
    Dimroth P (1997) Primary sodium ion translocating enzymes. Biochim Biophys Acta 1318, 1151.
  • 18
    Müller V, Aufurth S & Rahlfs S (2001) The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+ translocating F1FO-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim Biophys Acta 1505, 108120.
  • 19
    Fillingame RH, Jiang W & Dmitriev OY (2000) Coupling H+ transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor. J Exp Biol 203, 917.
  • 20
    Altendorf K, Stalz W, Greie J & Deckers-Hebestreit G (2000) Structure and function of the FO complex of the ATP synthase from Escherichia coli. J Exp Biol 203, 1928.
  • 21
    Abrahams JP, Leslie AGW, Lutter R & Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621628.
  • 22
    Pänke O, Gumbiowski K, Junge W & Engelbrecht S (2000) F-ATPase: specific observation of the rotating c subunit oligomer of EFOEF1. FEBS Lett 472, 3438.
  • 23
    Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y & Futai M (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (FOF1): direct observation. Science 286, 17221724.
  • 24
    Stock D, Gibbons C, Arechaga I, Leslie AG & Walker JE (2000) The rotary mechanism of ATP synthase. Curr Opin Struct Biol 10, 672679.
  • 25
    Yoshida M, Muneyuki E & Hisabori T (2001) ATP synthase − a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2, 669677.
  • 26
    Duncan TM, Zhou Y, Bulygin VV, Hutcheon ML & Cross RL (1995) Probing interactions of the Escherichia coli F0F1 ATP synthase beta and gamma subunits with disulphide cross-links. Biochem Soc Trans 23, 736741.
  • 27
    Cross RL & Duncan TM (1996) Subunit rotation in FOF1-ATP synthases as a means of coupling proton transport through FO to the binding changes in F1. J Bioenerg Biomembr 28, 403408.
  • 28
    Nakano T, Ikegami T, Suzuki T, Yoshida M & Akutsu H (2006) A new solution structure of ATP synthase subunit c from thermophilic Bacillus PS3, suggesting a local conformational change for H+-translocation. J Mol Biol 358, 132144.
  • 29
    Yokoyama K, Nakano M, Imamura H, Yoshida M & Tamakoshi M (2003) Rotation of the proteolipid ring in the V-ATPase. J Biol Chem 278, 2425524258.
  • 30
    Dimroth P, von Ballmoos C, Meier T & Kaim G (2003) Electrical power fuels rotary ATP synthase. Structure 11, 14691473.
  • 31
    Xing J, Wang H, von Ballmoos C, Dimroth P & Oster G (2004) Torque generation by the Fo motor of the sodium ATPase. J Biophys 87, 21482163.
  • 32
    Altendorf K, Lukas M, Kohl B, Müller CR & Sandermann H Jr (1977) Isolation and purification of bacterial membrane proteins by the use of organic solvents: the lactose permease and the carbodiimide-reactive protein of the adenosinetriphosphatase complex of Escherichia coli. J Supramol Struct 6, 229238.
  • 33
    Wachter E, Schmid R, Deckers G & Altendorf K (1980) Amino acid replacement in dicyclohexylcarbodiimide-reactive proteins from mutant strains of Escherichia coli defective in the energy-transducing ATPase complex. FEBS Lett 113, 265270.
  • 34
    Sebald W & Hoppe J (1981) On the structure and genetics of the proteolipid subunit of the ATPase complex. Curr Top Bioenerg 12, 164.
  • 35
    Beechey RB, Linnett PE & Fillingame RH (1979) Isolation of carbodiimide-binding proteins from mitochondria and Escherichia coli. Methods Enzymol 55, 426434.
  • 36
    Fillingame RH & Wopat AE (1978) Carbodiimide-resistant mutant of Escherichia coli: suppression of resistance to dicyclohexylcarbodiimide by growth on glucose or glycerol. J Bacteriol 134, 687689.
  • 37
    Fillingame RH (1976) Purification of the carbodiimide-reactive protein component of the ATP energy-transducing system of Escherichia coli. J Biol Chem 251, 66306637.
  • 38
    Meier T, Polzer P, Diederichs K, Welte W & Dimroth P (2005) Structure of the rotor ring of F-type Na+- ATPase from Ilyobacter tartaricus. Science 308, 659662.
  • 39
    Rahlfs S & Müller V (1997) Sequence of subunit c of the Na+-translocating F1F0 ATPase of Acetobacterium woodii: proposal for determinants of Na+ specificity as revealed by sequence comparisons. FEBS Lett 404, 269271.
  • 40
    Meier T, Ferguson SA, Cook GM, Dimroth P & Vonck J (2006) Structural investigations of the membrane-embedded rotor ring of the F-ATPase from Clostridium paradoxum. J Bacteriol 188, 77597764.
  • 41
    Murata T, Yamato I, Kakinuma Y, Leslie AG & Walker JE (2005) Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308, 654659.
  • 42
    Bentrup KHZ, UbbinkKok T, Lolkema JS & Konings WN (1997) An Na+-pumping V1V0-ATPase complex in the thermophilic bacterium Clostridium fervidus. J Bacteriol 179, 12741279.
  • 43
    Reidlinger J & Müller V (1994) Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1F0-type enzyme. Eur J Biochem 223, 275283.
  • 44
    Ferguson SA, Keis S & Cook GM (2006) Biochemical and molecular characterization of a Na+-translocating F1FO-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 188, 50455054.
  • 45
    Neumann S, Matthey U, Kaim G & Dimroth P (1998) Purification and properties of the F1F0 ATPase of Ilyobacter tartaricus, a sodium ion pump. J Bacteriol 180, 33123316.
  • 46
    Laubinger W & Dimroth P (1988) Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry 27, 75317537.
  • 47
    Heefner DL & Harold FM (1982) ATP-driven sodium pump in Streptococcus faecalis. Proc Natl Acad Sci USA 79, 27982802.
  • 48
    Lewalter K & Müller V (2006) Bioenergetics of archaea: ancient energy conserving mechanisms developed in the early history of life. Biochim Biophys Acta 1757, 437445.
  • 49
    Inatomi KI (1986) Characterization and purification of the membrane-bound ATPase of the archaebacterium Methanosarcina barkeri. J Bacteriol 167, 837841.
  • 50
    Inatomi KI, Kamagata Y & Nakamura K (1993) Membrane ATPase from the aceticlastic methanogen Methanothrix thermophila. J Bacteriol 175, 8084.
  • 51
    Steinert K, Wagner V, Kroth-Pancic PG & Bickel-Sandkötter S (1997) Characterization and subunit structure of the ATP synthase of the halophilic archaeon Haloferax volcanii and organization of the ATP synthase genes. J Biol Chem 272, 62616269.
  • 52
    Lingl A, Huber H, Stetter KO, Mayer F, Kellermann J & Müller V (2003) Isolation of a complete A1AO ATP synthase comprising nine subunits from the hyperthermophile Methanococcus jannaschii. Extremophiles 7, 249257.
  • 53
    Lemker T, Ruppert C, Stöger H, Wimmers S & Müller V (2001) Overproduction of a functional A1 ATPase from the archaeon Methanosarcina mazei Gö1 in Escherichia coli. Eur J Biochem 268, 37443750.
  • 54
    Yamashita T & Kawakita M (1992) Reconstitution of Na+/H+-antiporter of bovine renal brush-border membrane into proteoliposomes and detection of a 110-kDa protein cross-reactive with antibodies against a human Na+/H+-antiporter partial peptide in antiport-active fractions after partial fractionation. J Biochem 111, 162167.
  • 55
    Spruth M, Reidlinger J & Müller V (1995) Sodium ion dependence of inhibition of the Na+-translocating F1FO-ATPase from Acetobacterium woodii. Probing the site(s) involved in ion transport. Biochim Biophys Acta 1229, 96102.
  • 56
    Atsumi T, Maekawa Y, Tokuda H & Imae Y (1992) Amiloride at pH 7.0 inhibits the Na+-driven flagellar motors of Vibrio alginolyticus but allows cell growth. FEBS Lett 314, 114116.
  • 57
    Kleyman TR & Cragoe EJ Jr (1988) Amiloride and its analogs as tools for the study of ion transport. J Membr Biol 105, 121.
  • 58
    Kluge C & Dimroth P (1993) Kinetics of inactivation of the F1FO-ATPase of Propionigenium modestum by dicyclohexylcarbodiimide in relationship to H+ and Na+ concentration: probing the binding site for the coupling ions. Biochemistry 32, 1037810386.
  • 59
    Müller V (2001) Bacterial fermentation. In Encyclopedia of Life Sciences, doi:10.1038/npg.els.0001415.
  • 60
    Müller V, Blaut M, Heise R, Winner C & Gottschalk G (1990) Sodium bioenergetics in methanogens and acetogens. FEMS Microbiol Rev 87, 373377.
  • 61
    Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69, 63456353.
  • 62
    Gottschalk G & Thauer RK (2001) The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505, 2836.
  • 63
    Deppenmeier U & Müller V (2007) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. In Results Probl Cell Differ (Richter D & Tiedge H, eds), doi:10.1007/400_2006_026. Springer, Heidelberg.
  • 64
    Müller V, Lingl A, Lewalter K & Fritz M (2005) ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases. J Bioenerg Biomembr 37, 455460.
  • 65
    Müller V, Lemker T, Lingl A, Weidner C, Coskun Ü & Grüber G (2005) Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol 10, 167180.
  • 66
    Sapra R, Bagramyan K & Adams MW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 100, 75457550.
  • 67
    Robb FT, Maeder DL, Brown JR, Di Ruggiero J, Stump MD, Yeh RK, Weiss RB & Dunn DM (2001) Genomic sequence of hyperthermophile Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 330, 134157.
  • 68
    Müller V (2004) An exceptional variability in the motor of archaeal A1AO ATPases: from multimeric to monomeric rotors comprising 6–13 ion binding sites. J Bioenerg Biomembr 36, 115125.
  • 69
    Meier T & Dimroth P (2002) Intersubunit bridging by Na+ ions as a rationale for the unusual stability of the c-rings of Na+-translocating F1F0 ATP synthases. EMBO Rep 3, 10941098.
  • 70
    Hedderich R (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36, 6575.
  • 71
    Krulwich TA, Ito M, Gilmour R, Sturr MG, Guffanti AA & Hicks DB (1996) Energetic problems of extremely alkaliphilic aerobes. Biochim Biophys Acta 1275, 2126.
  • 72
    van de Vossenberg JLCM, Ubbink-Kok T, Elferink MGL, Driessen AJM & Konings WN (1995) Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol Microbiol 18, 925932.
  • 73
    Huber G, Drobner E, Huber H & Stetter KO (1992) Growth by aerobic oxidation of molecular hydrogen in archaea − a metabolic property so far unknown for this domain. Syst Appl Microbiol 15, 502504.
  • 74
    Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72, 248254.
  • 75
    Bode C, Goebell H & Stahler E (1968) Elimination of errors caused by turbidity in the determination of protein by the biuret method. Z Klin Chem Klin Biochem 6, 418422.
  • 76
    Heinonen JE & Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113, 313317.
  • 77
    Towbin H, Staehelin T & Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 43504354.
  • 78
    Shevchenko A, Wilm M, Vorm O & Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68, 850858.
  • 79
    Rosenfeld J, Capdevielle J, Guillemot JC & Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203, 173179.