• 1
    Changeux J & Edelstein SJ (2001) Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors. Curr Opin Neurobiol 11, 369377.
  • 2
    Lindstrom JM (1997) Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 15, 193222.
  • 3
    Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10, 6999.
  • 4
    Ishii M & Kurachi Y (2006) Muscarinic acetylcholine receptors. Curr Pharm Des 12, 35733581.
  • 5
    Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Léna C, Le Novère N, Marubio L, Picciotto M & Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Rev 26, 198216.
  • 6
    Karlin A & Akabas M (1996) Toward a structural basis for the function of the nicotinic acetylcholine receptors and their cousins. Neuron 15, 12311244.
  • 7
    Unwin N (1995) Acetylcholine receptor channel images in the open state. Nature 373, 3743.
  • 8
    Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M & Numa S (1986) Expression of functional sodium channels from cloned cDNA. Nature 322, 826828.
  • 9
    Miledi R, Molinoff P & Potter LT (1971) Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature 229, 554557.
  • 10
    Kasai M, Changeux JP & Monnerie L (1969) In vitro interaction of 1-anilino 8 naphthalene sulfonate with excitable membranes isolated from the electric organ of Electrophorus electricus. Biochem Biophys Res Commun 36, 420427.
  • 11
    Dennis M, Giraudat J, Kotzyba-Hibert F, Goeldner M, Hirth C, Chang JY, Lazure C, Chretien M & Changeux JP (1988) Amino acids of the Torpedo marmorata acetylcholine receptor subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 27, 23462357.
  • 12
    Galzi JL & Changeux JP (1995) Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology 34, 563582.
  • 13
    Huganir RL & Greengard P (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 5, 555567.
  • 14
    Brejc K, van Dijk WJ, Klaasen RV, Schuurmans M, van de Roost J, Smit AB & Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269276.
  • 15
    Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors RC, van Elk R, Sorgedrager B et al. (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411, 261268.
  • 16
    Celie P, van Rossum-Fikkert SE, van Dijk JW, Brejc K & Smit AB (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41, 907914.
  • 17
    Celie PH, Kasheverov IE, Mordvintsev DY, Hogg RC, van Nierop P, van Elk R, van Rossum-Fikkert SE, Zhmak MN, Bertrand D, Tsetlin V et al. (2005) Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant. Nat Struct Mol Biol 12, 582588.
  • 18
    Ulens C, Hogg R, Bertrand D, Tsetlin V, Smit A & Sixma T (2006) Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc Natl Acad Sci USA 103, 36153620.
  • 19
    Tasneem A, Iyer L, Jakobsson E & Aravind L (2004) Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol 6, R4.
  • 20
    Bocquet N, Prado de Carvalho L, Cartaud J, Neyton J, Le Poupon C, Taly A, Grutter T, Changeux JP & Corringer PJ (2007) A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116119.
  • 21
    Unwin N (1993) Nicotinic acetylcholine receptor at 9 Å resolution. J Mol Biol 229, 11011124.
  • 22
    Beroukhim R & Unwin N (1995) Three-dimensional location of the main immunogenic region of the acetylcholine receptor. Neuron 15, 323331.
  • 23
    Miyazawa A, Fujiyoshi Y, Stowell M & Unwin N (1999) Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel wall. J Mol Biol 288, 765786.
  • 24
    Miyazawa A, Fujiyoshi Y & Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 424, 949955.
  • 25
    West AP, Bjorkman PJ, Dougherty DA & Lester HA (1997) Expression and circular dichroism of the extracellular domain of the alpha subunit of the nicotinic acetylcholine receptor. J Biol Chem 272, 2546825473.
  • 26
    Schrattenholz A, Pfeiffer S, Pejovic V, Rudolph R, Godovac-Zimmermann J & Maelicke A (1998) Expression and renaturation of the N-terminal extracellular domain of Torpedo nicotinic acetylcholine receptor alpha subunit. J Biol Chem 273, 3239332399.
  • 27
    Alexeev T, Krivoshein A, Shevalier A, Kudelina I, Telyakova O, Vincent A, Utkin Y, Hucho F & Tsetlin V (1999) Physicochemical and immunological studies of the N-terminal domain of the Torpedo acetylcholine receptor α-subunit expressed in Escherichia coli. Eur J Biochem 259, 310319.
  • 28
    Grant MA, Gentile LN, Shi QL, Pellegrini M & Hawrot E (1999) Expression and spectroscopic analysis of soluble nicotinic acetylcholine receptor fragments derived from the extracellular domain of the α-subunit. Biochemistry 38, 1073010742.
  • 29
    Yao Y, Wang J, Virronchatapan N, Samson A, Chill J, Rothe E, Anglister J & Wang ZZ (2002) Yeast expression and NMR analysis of the extracellular domain of muscle nicotinic acetylcholine receptor α subunit. J Biol Chem 277, 1261312621.
  • 30
    Tsetlin VI, Dergousova NI, Azeeva EA, Kryukova EV, Kudelina IA, Shibanova ED, Kasheverov IE & Methfessel C (2002) Refolding of the Escherichia coli expressed extracellular domain of alpha 7 nicotinic acetylcholine receptor. Eur J Biochem 269, 28012809.
  • 31
    Hertling-Jaweed S, Bandinin G, Muller-Fahrow A, Dommes V & Hucho F (1988) Rapid preparation of the nicotinic acetylcholine receptor for crystallization in detergent solution. FEBS Lett 241, 2932.
  • 32
    Paas Y, Cartaud J, Recouvreur M, Grailhe R, Dufresne V, Pebay-Peyroyla E, Landau EM & Changeux JP (2003) Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid–detergent matrices. Proc Natl Acad Sci USA 100, 1130911314.
  • 33
    Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 346, 967989.
  • 34
    Corringer PJ, Le Novere N & Changeaux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40, 431458.
  • 35
    Arias HR (2000) Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem Int 36, 595645.
  • 36
    Galzi JL, Bertrand D, Devillers-Thiery A, Revah F, Bertrand S & Changeux JP (1991) Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptors site investigated by site directed mutagenesis. FEBS Lett 294, 198202.
  • 37
    Barkas T, Mauron A, Roth B, Alliod C, Tzartos SJ & Ballivet M (1987) Mapping the main immunogenic region and toxin binding site of the nicotinic acetylcholine receptor. Science 235, 7780.
  • 38
    Tzartos SJ, Kokla A, Walgrave SL & Conti-Tronconi BM (1988) Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67–76 of the alpha subunit. Proc Natl Acad Sci USA 85, 28992903.
  • 39
    Tzartos SJ, Cung MT, Demange P, Loutrari H, Mamalaki A, Marraud M, Papadouli I, Sakarellos C & Tsikaris V (1991) The main immunogenic region (MIR) of the nicotinic acetylcholine receptor and the anti-MIR antibodies. Mol Neurobiol 5, 129.
  • 40
    Tzartos SJ, Barkas T, Cung M, Mamalaki A, Marraud M, Papanastasiou D, Sakarellos C, Sakarellos-Daitsiotis M, Tsantili P & Tsikaris V (1998) Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev 163, 89120.
  • 41
    Wang F, Gerzanich V, Wells GB, Anand R, Peng X, Keyser K & Lindstrom J (1996) Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits. J Biol Chem 271, 1765617665.
  • 42
    Wang F, Nelson M, Kuryatov A, Keyser K & Lindstrom J (1998) Chronic nicotine treatment up-regulates human α3 β2 but not α3 β4 acetylcholine receptors stably transfected in human embryonic kidney cells. J Biol Chem 273, 2872128732.
  • 43
    Sugiyama N, Boyd AE & Taylor P (1996) Anionic residue in the alpha-subunit of the nicotinic acetylcholine receptor contributing to subunit assembly and ligand binding. J Biol Chem 271, 2657526581.
  • 44
    Kao PN & Karlin A (1986) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem 261, 80858088.
  • 45
    Galzi JL, Revah F, Black D, Goeldner M, Hirth C & Changeux JP (1990) Identification of a novel amino acid alpha-tyrosine93 within the cholinergic ligands-binding sites of the acetylcholine receptor by photoaffinity labeling. Additional evidence for a three-loop model of the cholinergic ligands-binding sites. J Biol Chem 265, 1043010437.
  • 46
    Fu DX & Sine SM (1994) Competitive antagonists bridge the alpha–gamma subunit interface of the acetylcholine receptor through quaternary ammonium–aromatic interactions. J Biol Chem 269, 2615226157.
  • 47
    Celie PH, Klaassen RV, van Rossum-Fikkert SE, van Elk R, van Nierop P, Smit AB & Sixma TK (2005) Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J Biol Chem 280, 2645726466.
  • 48
    Kostelidou K, Trakas N, Zouridakis M, Bitzopoulou K, Sotiriadis A, Gavra I & Tzartos SJ (2006) Expression and characterisation of soluble forms of the extracellular domains of the β,γ and ε subunits of the human muscle acetylcholine receptor. FEBS J 273, 35573568.
  • 49
    Tierney ML & Unwin N (2000) Electron microscopic evidence for the assembly of soluble pentameric extracellular domains of the nicotinic acetylcholine receptor. J Mol Biol 303, 185196.
  • 50
    Avramopoulou V, Mamalaki A & Tzartos SJ (2004) Soluble, oligomeric, and ligand-binding extracellular domain of the human alpha7 acetylcholine receptor expressed in yeast: replacement of the hydrophobic cysteine loop by the hydrophilic loop of the ACh-binding protein enhances protein solubility. J Biol Chem 279, 3828738293.
  • 51
    Levandoski MM, Lin Y, Moise L, McLaughlin JT, Cooper E & Hawrot E (1999) Chimeric analysis of a neuronal nicotinic acetylcholine receptor reveals amino acids conferring sensitivity to alpha-bungarotoxin. J Biol Chem 274, 2611326119.
  • 52
    Zeng H, Moise L, Grant MA & Hawrot E (2001) The solution structure of the complex formed between alpha-bungarotoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica. J Biol Chem 276, 2293022940.
  • 53
    Harel M, Kasher R, Nicolas A, Guss JM, Balass M, Fridkin M, Smit AB, Brejc K, Sixma TK, Katchalski-Katzir E et al. (2001) The binding site of acetylcholine receptor as visualized in the X-ray structure of a complex between alpha-bungarotoxin and a mimotope peptide. Neuron 32, 265275.
  • 54
    Balass M, Katchalski-Katzir E & Fuchs S (1997) The alpha-bungarotoxin binding site on the nicotinic acetylcholine receptor: analysis using a phage-epitope library. Proc Natl Acad Sci USA 94, 60546058.
  • 55
    Hansen SB, Sulzenbachre G, Huxford T, Marchot P, Taylor P & Bourne Y (2005) Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J 24, 36353646.
  • 56
    Bourne Y, Talley T, Hansen SB, Taylor P & Marchot P (2005) Crystal structure of Cbtx–AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors. EMBO J 24, 15121522.
  • 57
    Schrattenholz A, Godovac-Zimmermann J, Schaèfer HJ, Albuquerque EX & Maelicke A (1993) Photoaffinity labeling of Torpedo acetylcholine receptor by physostigmine. Eur J Biochem 216, 671677.
  • 58
    Buisson B & Bertrand D (1998) Allosteric modulation of neuronal nicotinic acetylcholine-receptors. J Physiol (Paris) 92, 89100.
  • 59
    Lena C & Changeux JP (1993) Allosteric modulators of the nicotinic acetylcholine receptor. Trends Neurosci 16, 181186.
  • 60
    Iorga B, Herlem D, Barré E & Guillou C (2006) Acetylcholine nicotinic receptors: finding the putative binding site of allosteric modulators using the ‘blind docking’ approach. J Mol Model 12, 366372.
  • 61
    Tsetlin VI & Hucho F (2004) Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications. FEBS Lett 557, 913.
  • 62
    Neumann D, Barchan D, Safran A, Gershoni JM & Fuchs S (1986) Mapping of the α-bungarotoxin binding site within the α subunit of the acetylcholine receptor. Proc Natl Acad Sci USA 83, 30083011.
  • 63
    Tzartos SJ & Remoundos MS (1990) Fine localization of the major α-bungarotoxin binding site to residues α189–α195 of the Torpedo acetylcholine receptor. J Biol Chem 265, 2146221467.
  • 64
    Ruan KH, Spurlino J, Quiocho FA & Atassi MZ (1990) Acetylcholine receptor–α-bungarotoxin interactions: determination of the region-to-region contacts by peptide–peptide interactions and molecular modeling of the receptor cavity. Proc Natl Acad Sci USA 87, 61566160.
  • 65
    Moise L, Piserchio A, Basus B & Hawrot E (2002) NMR structural analysis of α-bungarotoxin and its complex with the principal α-neurotoxin-binding sequence on the α7 subunit of a neuronal nicotinic acetylcholine receptor. J Biol Chem 277, 1240612417.
  • 66
    Marinou M & Tzartos SJ (2003) Identification of regions involved in the binding of alpha-bungarotoxin to the human alpha7 neuronal nicotinic acetylcholine receptor using synthetic peptides. Biochem J 372, 543554.
  • 67
    Gotti C, Frigerio F, Bolognesi M, Longhi R, Racchetti G & Clementi F (1988) Nicotinic acetylcholine receptor: a structural model for α-subunit peptide 188–201, the putative binding site for cholinergic agents. FEBS Lett 228, 118122.
  • 68
    Wilson PT & Lentz TL (1988) Binding of α-bungarotoxin to synthetic peptides corresponding to residues 173–204 of the α subunit of Torpedo, calf, and human acetylcholine receptor and restoration of high-affinity binding by sodium dodecyl sulphate. Biochemistry 27, 66676674.
  • 69
    Osaka H, Sugiyama N & Taylor P (1998) Distinctions in agonist and antagonist specificity conferred by anionic residues of the nicotinic acetylcholine receptor. J Biol Chem 273, 1275812765.
  • 70
    Blount P & Merlie JP (1990) Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly. J Cell Biol 111, 26132622.
  • 71
    Gehle VM & Sumikawa K (1991) Site-directed mutagenesis of the conserved N-glycosylation site on the nicotinic acetylcholine receptor subunits. Brain Res Mol Brain Res 11, 1725.
  • 72
    Gehle VM, Walcott EC, Nishizaki T & Sumikawa K (1997) N-Glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors. Brain Res Mol Brain Res 45, 219229.
  • 73
    Prives J & Bar-Sagi D (1983) Effect of tunicamycin, an inhibitor of protein glycosylation, on the biological properties of acetylcholine receptor in cultured muscle cells. J Biol Chem 258, 17751780.
  • 74
    Shtrom SS & Hall ZW (1996) Formation of a ligand-binding site for the acetylcholine receptor in vitro. J Biol Chem 271, 2550625514.
  • 75
    Psaridi-Linardaki L, Mamalaki A, Remoundos M & Tzartos SJ (2002) Expression of soluble ligand- and antibody-binding extracellular domain of human muscle acetylcholine receptor α subunit in the yeast Pichia pastoris: role of glycosylation in α-bungarotoxin binding. J Biol Chem 277, 2698026986.
  • 76
    Servent D & Menez A (2001) Snake neurotoxins that interact with nicotinic acetylcholine receptor. In Handbook of Neurotoxicology, Vol. 1 (Massaro EJ, ed.), pp. 385425. Humana Press, Totowa, NJ.
  • 77
    Changeaux JP & Edelstein SJ (2005) Chemical structure of the agonist binding site. In Nicotinic Acetylcholine Receptors, pp. 5163. Odile Jacob, New York, NY.
  • 78
    McIntosh JM, Santos AD & Olivera BM (1999) Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu Rev Biochem 68, 5988.
  • 79
    Luo S, Nguyen TA, Cartier GE, Olivera BM, Yoshikami D & McIntosh JM (1999) Single-residue alteration in alpha-conotoxin PnIA switches its nAChR subtype selectivity. Biochemistry 38, 1454214548.
  • 80
    Hogg RC, Hopping G, Alewood PF, Adams DJ & Bertrand D (2003) Alpha-conotoxins PnIA and [A10L]PnIA stabilize different states of the alpha7–L247T nicotinic acetylcholine receptor. J Biol Chem 278, 2690826914.
  • 81
    McIntosh JM, Yoshikami D, Mahe E, Nielsen DB, Rivier JE, Gray WR & Olivera B (1994) A nicotinic acetylcholine receptor ligand of unique specificity, alpha-conotoxin ImI. J Biol Chem 269, 1673316739.
  • 82
    Ellison M, Gao F, Wang HL, Sine SM, McIntosh JM & Olivera BM (2004) Alpha-conotoxins ImI and ImII target distinct regions of the human alpha7 nicotinic acetylcholine receptor and distinguish human nicotinic receptor subtypes. Biochemistry 43, 1601916026.
  • 83
    Hansen SB, Talley TT, Radic Z & Taylor P (2004) Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia californica. J Biol Chem 279, 2419724202.
  • 84
    Dutertre S, Nicke A & Lewis RJ (2005) Beta2 subunit contribution to 4/7 alpha-conotoxin binding to the nicotinic acetylcholine receptor. J Biol Chem 280, 3046030468.
  • 85
    Mukhtasimova N, Free C & Sine SM (2005) Initial coupling of binding to gating mediated by conserved residues in the muscle nicotinic receptor. J Gen Physiol 126, 2339.
  • 86
    Unwin N, Miyazawa A, Li J & Fujiyoshi Y (2002) Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J Mol Biol 319, 11651176.
  • 87
    Raftery MA, Hunkapiller MW, Strader CD & Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208, 14541456.
  • 88
    Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C & Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406411.
  • 89
    Witzemann V, Barg B, Nishikawa Y, Sakmann B & Numa S (1987) Differential regulation of muscle acetylcholine receptor gamma- and epsilon-subunit mRNAs. FEBS Lett 223, 104112.
  • 90
    Sine SM & Claudio T (1991) Gamma- and delta-subunits regulate the affinity and the cooperativity of ligand binding to the acetylcholine receptor. J Biol Chem 266, 1936919377.
  • 91
    Ackermann EJ & Taylor P (1997) Nonidentity of the α-neurotoxin binding sites on the nicotinic acetylcholine receptor revealed by modification in α-neurotoxin and receptor structures. Biochemistry 36, 1283612844.
  • 92
    Sine SM, Ohno K, Bouzat C, Auerbach A, Milone M, Pruitt JN & Engel AG (1995) Mutation of the acetylcholine receptor ε subunit causes a slow-channel myasthenic syndrome by enhancing agonist-binding affinity. Neuron 15, 229239.
  • 93
    Wheeler SV, Jane SD, Cross KM, Chad JE & Foreman RC (1994) Membrane clustering and bungarotoxin binding by the nicotinic acetylcholine receptor: role of the beta subunit. J Neurochem 63, 18911899.
  • 94
    Green WN, Ross AF & Claudio T (1991) Acetylcholine receptor assembly is stimulated by phosphorylation of its γ subunit. Neuron 7, 659666.
  • 95
    Ramanathan VK & Hall ZW (1999) Altered glycosylation sites of the δ subunit of the acetylcholine receptor (ACHR) reduce αδ association and receptor assembly. J Biol Chem 274, 2051320520.
  • 96
    Missias AC, Chu GC, Klocke BJ, Sanes JR & Merlie JP (1996) Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR γ-to-ε switch. Dev Biol 179, 223238.
  • 97
    Yumoto N, Wakatsuki S & Sehara-Fujisawa A (2005) The acetylcholine γ-to-ε switch occurs in individual endplates. Biochem Biophys Res Commun 331, 15221527.
  • 98
    Sanes JR, Johnson YR, Kotzbauer PT, Mudd J, Hanley T, Martinou JC & Merlie JP (1991) Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibres. Development 113, 11811191.
  • 99
    Newland CF, Beeson D, Vincent A & Newsom-Davis J (1993) Human nicotinic acetylcholine receptor α-subunit isoforms: origins and expression. Nucleic Acids Res 21, 54635467.
  • 100
    Newland CF, Beeson D, Vincent A & Newsom-Davis J (1995) Functional and non-functional isoforms of the human muscle acetylcholine receptor. J Physiol 489, 767778.
  • 101
    Gattenlöhner S, Schneider C, Thamer C, Klein R, Roggendorf W, Gohlke F, Niethammer C, Czub S, Vincent A, Müller-Hermelink HK et al. (2002) Expression of foetal type acetylcholine receptor to type I muscle fibres in human neuromuscular disorders. Brain 125, 13091319.
  • 102
    Johnson MA, Polgar J, Weightman D & Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18, 111129.
  • 103
    Adams L, Carlson BM, Henderson L & Goldman D (1995) Adaptation of nicotinic acetylcholine receptor, myogenin and MRF4 gene expression to long-term denervation. J Cell Biol 131, 13411349.
  • 104
    MacLennan C, Beeson D, Buigis AM, Vincent A & Newsom-Davis J (1997) Acetylcholine receptor expression in human extraocular muscles and their susceptibility to myasthenia gravis. Ann Neurol 41, 423431.
  • 105
    Lindstrom JM (2000) Acetylcholine receptors and myasthenia. Muscle Nerve 23, 453477.
  • 106
    Hughes BW, Kusner LL & Kaminski HJ (2006) Molecular architecture of the neuromuscular junction. Muscle Nerve 33, 445461.
  • 107
    Fambrough DM (1979) Control of acetylcholine receptors in skeletal muscle. Physiol Rev 59, 165227.
  • 108
    Ponomareva ON, Ma H, Dakour R, Raabe TD, Lai C & Rimer M (2005) Stimulation of acetylcholine receptor transcription by neuregelin-2 requires an N-box response element and is regulated by alternative splicing. Neuroscience 134, 495503.
  • 109
    Willmann R & Fuhrer C (2002) Neuromuscular synaptogenesis: clustering of acetylcholine receptors revisited. Cell Mol Life Sci 59, 12961316.
  • 110
    Watty A, Neubauer G, Dreger M, Zimmer M, Wilm M & Burden SJ (2000) The in vitro and in vivo phosphotyrosine map of activated MuSK. Proc Natl Acad Sci USA 97, 45854590.
  • 111
    Tsim KWK, Choi RCY, Siow NL, Cheng AWM, Ling KKY, Jiang JXS, Tung EKK, Lee HHC, Xie QH, Simon J et al. (2003) ATP induces post-synaptic gene expressions in vertebrate skeletal neuromuscular junctions. J Neurocyt 32, 603617.
  • 112
    Jaworski A & Burden SJ (2006) Neuromuscular synapse formation in mice lacking motor-neuron and skeletal-muscle-derived neuregelin-1. J Neurosci 26, 655661.
  • 113
    Kukhtina V, Kottwitz D, Strauss H, Heise B, Chebotareva N, Tsetlin V & Hucho F (2006) Intracellular domain of nicotinic acetylcholine receptor: the importance of being unfolded. J Neurochem 97, 6367.
  • 114
    Fischbach GD & Schuetze SM (1980) A post-natal decrease in acetylcholine channel open time at rat end-plates. J Physiol 303, 125137.
  • 115
    Koenen M, Peter C, Villaroel A, Witzemann V & Sakmann B (2005) Acetylcholine receptor channel subtype directs the innervation pattern of skeletal muscle. EMBO Reports 6, 570576.
  • 116
    Schuetze SM & Role LW (1987) Developmental regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci 10, 403457.
  • 117
    Missias AC, Mudd J, Cunningham JM, Steinbach J, Merlei JP & Sanes JR (1997) Deficient development and maintenance of postsynaptic specializations in mutant mice lacking an ‘adult’ acetylcholine receptor subunit. Development 124, 50755086.
  • 118
    Grassi F & Degasperi V (2000) Modulation of fetal and adult acetylcholine and Mg2+ at developing mouse end-plates. Pflügers Arch Eur J Physiol 440, 704709.
  • 119
    Herlitze S, Villarroel A, Witzemann V, Koenen M & Sakmann B (1996) Structural determinants of channel conductance in fetal and adult rat muscle acetylcholine receptors. J Physiol 492, 775787.
  • 120
    Takahashi M, Kubo T, Mizoguchi A, Carlson CG & Ohnishi K (2002) Spontaneous muscle action potentials fail to develop without fetal-type acetylcholine receptors. EMBO Reports 3, 674681.
  • 121
    Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K & Numa S (1988) Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645651.
  • 122
    Grassi F (1999) 5-Hydroxytryptamine blocks the fetal more potently than the adult mouse muscle acetylcholine receptor. Pflügers Arch Eur J Physiol 437, 903909.
  • 123
    Salpeter MM (1987) Development and neural control of the neuromuscular junction and of the junctional acetylcholine receptor. In The Vertebrate Neuromuscular Junction (Salpeter MM, ed.), pp. 55115. Alan R. Liss Inc., New York, NY.
  • 124
    Witzemann V, Schwarz H, Koenen M, Berberich C, Villarroel A, Wernig A, Brenner HR & Sakmann B (1996) Acetylcholine receptor ε-subunit deletion causes muscle weakness and atrophy in juvenile and adult mice. Proc Natl Acad Sci USA 93, 1328613291.
  • 125
    Schwarz H, Giese G, Müller H, Koenen M & Witzemann V (2000) Different functions of fetal and adult subtypes for the formation and maintenance of neuromuscular synapses revealed in ε-subunit-deficient mice. Eur J Neurosci 12, 31073116.
  • 126
    Salpeter MM, Kasprzak H, Feng H & Fertuck H (1979) End-plates after esterase inactivation in vivo: correlation between esterase concentration, functional response and fine structure. J Neurocytol 8, 95115.
  • 127
    Di Castro A, Martinello K, Grassi F, Eusebi F & Engel AG (2007) Pathogenic point mutations in a transmembrane domain of the ε subunit increase the Ca2+ permeability of the human endplate ACh receptor. J Physiol in press.
  • 128
    Jaramillo F, Vicini S & Schuetze SM (1988) Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle. Nature 335, 6668.
  • 129
    Merlie JP & Lindstrom J (1983) Assembly in vivo of mouse muscle acetylcholine receptor: identification of an α subunit species that may be an assembly intermediate. Cell 34, 747757.
  • 130
    Green WN & Claudio T (1993) Acetylcholine receptor assembly: subunit folding and oligomerisation occur sequentially. Cell 74, 5769.
  • 131
    Green WN & Wanamaker CP (1997) The role of the cysteine loop in acetylcholine receptor assembly. J Biol Chem 272, 2094520953.
  • 132
    Wanamaker CP & Green WN (2005) N-Linked glycosylation is required for nicotinic receptor assembly but not for subunit associations with calnexin. J Biol Chem 280, 3380033810.
  • 133
    Green WN & Wanamaker CP (1998) Formation of the nicotinic acetylcholine receptor binding sites. J Neurosci 18, 55555564.
  • 134
    Mitra M, Wanamaker CP & Green WN (2001) Rearrangement of nicotinic receptor α subunits during formation of the ligand binding sites. J Neurosci 21, 30003008.
  • 135
    Saedi MS, Conroy WG & Lindstrom J (1991) Assembly of Torpedo acetylcholine receptors in Xenopus oocytes. J Cell Biol 112, 10071015.
  • 136
    Blount P, Smith M & Merlie JP (1990) Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts. J Cell Biol 111, 26012611.
  • 137
    Gu Y, Forsayeth JR, Verrall S, Yu XM & Hall ZW (1991) Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells. J Cell Biol 114, 799807.
  • 138
    Blount P & Merlie JP (1988) Native folding of an acetylcholine receptor α subunit expressed in the absence of other subunits. J Biol Chem 263, 10721080.
  • 139
    Paulson HL, Ross AF, Green WN & Claudio T (1991) Analysis of early events in acetylcholine receptor assembly. J Cell Biol 113, 13711384.
  • 140
    Christianson JC & Green WN (2004) Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO J 23, 41564165.
  • 141
    Williamson PT, Meier BH & Watts A (2004) Structural and functional studies of the nicotinic acetylcholine receptor by solid-state NMR. Eur Biophys J 33, 247254.
  • 142
    Tsouloufis T, Mamalaki A, Remoundos M & Tzartos SJ (2000) Reconstitution of conformationally dependent epitopes on the N-terminal extracellular domain of the human muscle acetylcholine receptor α subunit expressed in Escherichia coli: implications for myasthenia gravis therapeutic approaches. Int Immunol 12, 12551265.
  • 143
    Psaridi-Linardaki L, Trakas N, Mamalaki A & Tzartos SJ (2005) Specific immunoadsorption of the autoantibodies from myasthenic patients using the extracellular domain of the human muscle acetylcholine receptor alpha-subunit. Development of an antigen-specific therapeutic strategy. J Neuroimmunol 159, 183191.
  • 144
    Li ZL, Li YJ, Guo CY, Shi YW, Xu MQ, Trommer WE & Yuan JM (2004) Soluble expression and affinity purification of functional domain of human acetylcholine receptor α-subunit by the modulation of maltose binding protein. Biotechnol Lett 26, 17651769.
  • 145
    Sideris S, Lagoumintzis G, Kordas G, Kostelidou K, Sotiriadis A, Poulas K & Tzartoz S (2007) Isolation and functional characterization of anti-acetylcholine receptor subunit specific autoantibodies from myasthenic patients: receptor loss in cell culture. J Neuroim, doi: 10.1016/j.jneuroim.2007.06.014.
  • 146
    Jansen KU, Conroy WG, Claudio T, Fox TD, Fujita N, Hamill O, Lindstrom JM, Luther M, Nelson N & Ryan KA (1989) Expression of the four subunits of the Torpedo californica nicotinic acetylcholine receptor in Saccharomyces cerevisiae. J Biol Chem 264, 1502215027.
  • 147
    Kurosaki T, Fukuda K, Konno T, Mori Y, Tanaka K, Mishina M & Numa S (1987) Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations. FEBS Lett 214, 253258.
  • 148
    Claudio T (1992) Stable expression of heterologous multisubunit protein complexes established by calcium phosphate- or lipid-mediated cotransfection. Methods Enzymol 207, 391408.
  • 149
    Claudio T, Paulson HL, Green WN, Ross AF, Hartman DS & Hayden D (1989) Fibroblasts transfected with Torpedo acetylcholine receptor beta-, gamma-, and delta-subunit cDNAs express functional receptors when infected with a retroviral alpha recombinant. J Cell Biol 108, 22772290.
  • 150
    Buller AL & White MM (1990) Functional acetylcholine receptors expressed in Xenopus oocytes after injection of Torpedo beta, gamma, and delta subunit RNAs are a consequence of endogenous oocyte gene expression. Mol Pharmacol 37, 423428.
  • 151
    Sumikawa K & Gehle VM (1992) Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure. J Biol Chem 267, 62866290.
  • 152
    White MM, Mayne KM, Lester HA & Davidson N (1985) Mouse–Torpedo hybrid acetylcholine receptors: functional homology does not equal sequence homology. Proc Natl Acad Sci USA 82, 48524856.
  • 153
    Mayne KM, Yoshii K, Yu L, Lester HA & Davidson N (1987) Expression of mouse–Torpedo acetylcholine receptor subunit chimeras and hybrids in Xenopus oocytes. Brain Res 388, 191197.
  • 154
    Yu L, Leonard RJ, Davidson N & Lester HA (1991) Single-channel properties of mouse–Torpedo acetylcholine receptor hybrids expressed in Xenopus oocytes. Brain Res Mol Brain Res 10, 203211.
  • 155
    Butler DH, Lasalde JA, Butler JK, Tamamizu S, Zimmerman G & McNamee MG (1997) Mouse–Torpedo chimeric alpha-subunit used to probe channel-gating determinants on the nicotinic acetylcholine receptor primary sequence. Cell Mol Neurobiol 17, 1333.
  • 156
    Sumikawa K & Miledi R (1989) Change in desensitization of cat muscle acetylcholine receptor caused by coexpression of Torpedo acetylcholine receptor subunits in Xenopus oocytes. Proc Natl Acad Sci USA 86, 367371.
  • 157
    Paulson HL & Claudio T (1990) Temperature-sensitive expression of all-Torpedo and Torpedo–rat hybrid AChR in mammalian muscle cells. J Cell Biol 110, 17051717.
  • 158
    Wang YD & Claudio TJ (1993) Xenopus muscle acetylcholine receptor alpha subunits bind ligands with different affinities. J Biol Chem 268, 1878218793.
  • 159
    Imoto K, Sakmann B, Mishina M, Mori Y, Konno T, Fukuda K, Kurasaki M, Bujo H, Fujita Y & Numa S (1986) Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324, 670674.
  • 160
    Loutrari H, Tzartos SJ & Claudio T (1992) Use of Torpedo–mouse hybrid acetylcholine receptors reveals immunodominance of the alpha subunit in myasthenia gravis antisera. Eur J Immunol 22, 29462956.
  • 161
    Loutrari H, Kokla A, Trakas N & Tzartos SJ (1997) Expression of human–Torpedo hybrid acetylcholine receptor (AChR) for analysing the subunit specificity of antibodies in sera from patients with myasthenia gravis (MG). Clin Exp Immunol 109, 538546.
  • 162
    Jackson MB, Imoto K, Mishina M, Konno T, Numa S & Sakmann B (1990) Spontaneous and agonist-induced openings of an acetylcholine receptor channel composed of bovine muscle alpha-, beta- and delta-subunits. Pflugers Arch 417, 129135.
  • 163
    Criado M, Koenen M & Sakmann B (1990) Assembly of an adult type acetylcholine receptor in a mouse cell line transfected with rat muscle epsilon-subunit DNA. FEBS Lett 270, 9599.
  • 164
    Charnet P, Labarca C & Lester HA (1992) Structure of the gamma-less nicotinic acetylcholine receptor: learning from omission. Mol Pharmacol 41, 708717.
  • 165
    Liu Y & Brehm P (1993) Expression of subunit-omitted mouse nicotinic acetylcholine receptors in Xenopus laevis oocytes. J Physiol 470, 349363.
  • 166
    Liu E, Hamill OP & Salpeter MM (1994) Mouse muscle epsilon- and gamma-containing acetylcholine receptors expressed in Xenopus laevis oocytes do not differ in their degradation half-lives. Neurosci Lett 174, 7780.
  • 167
    Garcia-Colunga J & Miledi R (1996) Serotonergic modulation of muscle acetylcholine receptors of different subunit composition. Proc Natl Acad Sci USA 93, 39903994.
  • 168
    Forsayeth JR, Franco A Jr, Rossi AB, Lansman JB & Hall ZW (1990) Expression of functional mouse muscle acetylcholine receptors in Chinese hamster ovary cells. J Neurosci 10, 27712779.
  • 169
    Witzemann V, Stein E, Barg B, Konno T, Koenen M, Kues W, Criado M, Hofmann M & Sakmann B (1990) Primary structure and functional expression of the alpha-, beta-, gamma-, delta- and epsilon-subunits of the acetylcholine receptor from rat muscle. Eur J Biochem 194, 437448.
  • 170
    Carlson CG & Feng Y (1993) Asynaptic expression of the adult nicotinic acetylcholine receptor in long-term cultures of mammalian myotubes. Brain Res Dev Brain Res 72, 245252.
  • 171
    Gu Y, Franco A Jr, Gardner PD, Lansman JB, Forsayeth JR & Hall ZW (1990) Properties of embryonic and adult muscle acetylcholine receptors transiently expressed in COS cells. Neuron 5, 147157.
  • 172
    Kullberg R, Owens JL, Camacho P, Mandel G & Brehm P (1990) Multiple conductance classes of mouse nicotinic acetylcholine receptors expressed in Xenopus oocytes. Proc Natl Acad Sci USA 87, 20672071.
  • 173
    Santos S & Aizenman E (2002) Functional expression of muscle-type nicotinic acetylcholine receptors in rat forebrain neurons in vitro. Methods Find Exp Clin Pharmacol 24, 6366.
  • 174
    Wang ZZ, Hardy SF & Hall ZW (1996) Assembly of the nicotinic acetylcholine receptor: the first transmembrane domains of truncated α and δ subunits are required for heterodimer formation in vivo. J Biol Chem 271, 2757527584.
  • 175
    Plazas PV, Katz E, Gomez-Casati ME, Bouzat C & Elgoyhen AB (2005) Stoichiometry of the alpha9alpha10 nicotinic cholinergic receptor. J Neurosci 25, 1090510912.
  • 176
    Grinevich VP, Letchworth SR, Lindenberger KA, Menager J, Mary V, Sadieva KA, Buhlman LM, Bohme GA, Pradier L, Benavides J, et al. (2005) Heterologous expression of human {alpha}6{beta}4{beta}3{alpha}5 nicotinic acetylcholine receptors: binding properties consistent with their natural expression require quaternary subunit assembly including the {alpha}5 subunit. J Pharmacol Exp Ther 312, 619626.
  • 177
    Xiao Y & Kellar KJ (2004) The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 310, 98107.
  • 178
    Wu J, Liu Q, Yu K, Hu J, Kuo YP, Segerberg M, St John PA & Lukas RJ (2006) Roles of nicotinic acetylcholine receptor beta subunits in function of human alpha4-containing nicotinic receptors. J Physiol 576, 103118.
  • 179
    Groot-Kormelink PJ, Luyten WH, Colquhoun D & Sivilotti LG (1998) A reporter mutation approach shows incorporation of the ‘orphan’ subunit beta3 into a functional nicotinic receptor. J Biol Chem 273, 1531715320.
  • 180
    Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A & Role L (1996) Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380, 347351.
  • 181
    Fischer H, Orr-Urtreger A, Role L & Huck S (2005) Selective deletion of the α5 subunit differentially affects somatic dendritic versus axonaly targeted nicotinic Ach receptors in mouse. J Physiol 563, 119137.
  • 182
    Wang N, Orr-Urtreger A, Chapman J, Rabinowitz R, Nachman R & Korczyn AD (2002) Autonomic function in mice lacking alpha5 neuronal nicotinic acetylcholine receptor subunit. J Physiol 542, 347354.
  • 183
    Williams BM, Temburni MK, Levey MS, Bertrand S, Bertrand D & Jacob MH (1998) The long internal loop of the alpha 3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nat Neurosci 1, 557562.
  • 184
    Xu J, Zhu Y & Heinemann SF (2006) Identification of sequence motifs that target neuronal nicotinic receptors to dendrites and axons. J Neurosci 26, 97809793.
  • 185
    Adams DJ & Nutter TJ (1992) Calcium permeability and modulation of nicotinic acetylcholine receptor-channels in rat parasympathetic neurons. J Physiol (Paris) 86, 6776.
  • 186
    Castro NG & Albuquerque EX (1995) Alpha-bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys J 68, 516524.
  • 187
    Rathouz MM & Berg DK (1994) Synaptic-type acetylcholine receptors raise intracellular calcium levels in neurons by two mechanisms. J Neurosci 14, 69356945.
  • 188
    Dajas-Bailador FA, Mogg AJ & Wonnacott S (2002) Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells: contribution of voltage-operated Ca2+ channels and Ca2+ stores. J Neurochem 81, 606614.
  • 189
    Brain KL, Trout SJ, Jackson VM, Dass N & Cunnane TC (2001) Nicotine induces calcium spikes in single nerve terminal varicosities: a role for intracellular calcium stores. Neuroscience 106, 395403.
  • 190
    Shoop RD, Chang KT, Ellisman MH & Berg DK (2001) Synaptically driven calcium transients via nicotinic receptors on somatic spines. J Neurosci 21, 771781.
  • 191
    Beker F, Weber M, Fink RH & Adams DJ (2003) Muscarinic and nicotinic ACh receptor activation differentially mobilize Ca2+ in rat intracardiac ganglion neurons. J Neurophysiol 90, 19561964.
  • 192
    Vijayaraghavan S, Pugh PC, Zhang ZW, Rathouz MM & Berg DK (1992) Nicotinic receptors that bind alpha-bungarotoxin on neurons raise intracellular free Ca2+. Neuron 8, 353362.
  • 193
    Barrantes GE, Murphy CT, Westwick J & Wonnacott S (1995) Nicotine increases intracellular calcium in rat hippocampal neurons via voltage-gated calcium channels. Neurosci Lett 196, 101104.
  • 194
    Tsuneki H, Klink R, Lena C, Korn H & Changeux JP (2000) Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. Eur J Neurosci 12, 24752485.
  • 195
    Sharma G & Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci USA 98, 41484153.
  • 196
    Quick MW & Lester RA (2002) Desensitization of neuronal nicotinic receptors. J Neurobiol 53, 457478.
  • 197
    Khiroug L, Giniatullin R, Klein RC, Fayuk D & Yakel JL (2003) Functional mapping and Ca2+ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. J Neurosci 23, 90249031.
  • 198
    Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N et al. (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23, 78207829.
  • 199
    Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC & Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65, 15261535.
  • 200
    Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M, Sullivan B, Demasters BK, Freedman R & Leonard S (1997) Comparison of the regional expression of nicotinic acetylcholine receptor alpha7 mRNA and [125I]-alpha-bungarotoxin binding in human post-mortem brain. J Comp Neurol 387, 385398.
  • 201
    Chen D & Patrick JW (1997) The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha7 subunit. J Biol Chem 272, 2402424029.
  • 202
    Kawai H, Zago W & Berg DK (2002) Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J Neurosci 22, 79037912.
  • 203
    Elgoyhen AB, Johnson DS, Boulter J, Vetter DE & Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705715.
  • 204
    Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF & Boulter J (2001) Alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 98, 35013506.
  • 205
    Battaglioli E, Gotti C, Terzano S, Flora A, Clementi F & Fornasari D (1998) Expression and transcriptional regulation of the human alpha3 neuronal nicotinic receptor subunit in T lymphocyte cell lines. J Neurochem 71, 12611270.
  • 206
    Flora A, Schulz R, Benfante R, Battaglioli E, Terzano S, Clementi F & Fornasari D (2000) Neuronal and extraneuronal expression and regulation of the human alpha5 nicotinic receptor subunit gene. J Neurochem 75, 1827.
  • 207
    Flora A, Schulz R, Benfante R, Battaglioli E, Terzano S, Clementi F & Fornasari D (2000) Transcriptional regulation of the human alpha5 nicotinic receptor subunit gene in neuronal and non-neuronal tissues. Eur J Pharmacol 393, 8595.
  • 208
    Fornasari D, Battaglioli E, Flora A, Terzano S & Clementi F (1997) Structural and functional characterization of the human alpha3 nicotinic subunit gene promoter. Mol Pharmacol 51, 250261.
  • 209
    Ficklin MB, Zhao S & Feng G (2005) Ubiquilin-1 regulates nicotine-induced up-regulation of neuronal nicotinic acetylcholine receptors. J Biol Chem 280, 3408834095.
  • 210
    Dineley KT & Patrick JW (2000) Amino acid determinants of alpha 7 nicotinic acetylcholine receptor surface expression. J Biol Chem 275, 1397413985.
  • 211
    Ren XQ, Cheng SB, Treuil M, Mukherjee J, Rao J, Braunewell KH, Lindstrom JM & Anand R (2005) Structural determinants of alpha4beta2 nicotinic acetylcholine receptor trafficking. J Neurosci 25, 66766686.
  • 212
    Castillo M, Mulet J, Gutierrez LM, Ortiz JA, Castelan F, Gerber S, Sala S, Sala F & Criado M (2005) Dual role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. J Biol Chem 280, 2706227068.
  • 213
    Williams ME, Burton B, Urrutia A, Shcherbatko A, Chavez-Noriega LE, Cohen CJ & Aiyar J (2005) Ric-3 promotes functional expression of the nicotinic acetylcholine receptor alpha7 subunit in mammalian cells. J Biol Chem 280, 12571263.
  • 214
    Bruses JL, Chauvet N & Rutishauser U (2001) Membrane lipid rafts are necessary for the maintenance of the (alpha) 7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 21, 504512.
  • 215
    Zhu D, Xiong WC & Mei L (2006) Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J Neurosci 26, 48414851.
  • 216
    Liu Z, Tearle AW, Nai Q & Berg DK (2005) Rapid activity-driven SNARE-dependent trafficking of nicotinic receptors on somatic spines. J Neurosci 25, 11591168.
  • 217
    Flores CM, Rogers SW, Pabreza LA, Wolfe BB & Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41, 3137.
  • 218
    Avila AM, Davila-Garcia MI, Ascarrunz VS, Xiao Y & Kellar KJ (2003) Differential regulation of nicotinic acetylcholine receptors in PC12 cells by nicotine and nerve growth factor. Mol Pharmacol 64, 974986.
  • 219
    Cormier A, Paas Y, Zini R, Tillement JP, Lagrue G, Changeux JP & Grailhe R (2004) Long-term exposure to nicotine modulates the level and activity of acetylcholine receptors in white blood cells of smokers and model mice. Mol Pharmacol 66, 17121718.
  • 220
    Harkness PC & Millar NS (2002) Changes in conformation and subcellular distribution of alpha4beta2 nicotinic acetylcholine receptors revealed by chronic nicotine treatment and expression of subunit chimeras. J Neurosci 22, 1017210181.
  • 221
    Meyer EL, Xiao Y & Kellar KJ (2001) Agonist regulation of rat alpha3 beta4 nicotinic acetylcholine receptors stably expressed in human embryonic kidney 293 cells. Mol Pharmacol 60, 568576.
  • 222
    Peng X, Gerzanich V, Anand R, Whiting PJ & Lindstrom J (1994) Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol Pharmacol 46, 523530.
  • 223
    Kuryatov A, Luo J, Cooper J & Lindstrom J (2005) Nicotine acts as a pharmacological chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Mol Pharmacol 68, 18391851.
  • 224
    Sallette J, Bohler S, Benoit P, Soudant M, Pons S, Le Novere N, Changeux JP & Corringer PJ (2004) An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetylcholine receptors by nicotine. J Biol Chem 279, 1876718775.
  • 225
    Nashmi R, Dickinson ME, McKinney S, Jareb M, Labarca C, Fraser SE & Lester HA (2003) Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J Neurosci 23, 1155411567.
  • 226
    Zhang ZW, Coggan JS & Berg DK (1996) Synaptic currents generated by neuronal acetylcholine receptors sensitive to alpha-bungarotoxin. Neuron 17, 12311240.
  • 227
    Ullian EM, McIntosh JM & Sargent PB (1997) Rapid synaptic transmission in the avian ciliary ganglion is mediated by two distinct classes of nicotinic receptors. J Neurosci 17, 210219.
  • 228
    Alkondon M, Pereira EF & Albuquerque EX (1998) Alpha-bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res 810, 257263.
  • 229
    Frazier CJ, Buhler AV, Weiner JL & Dunwiddie TV (1998) Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci 18, 82288235.
  • 230
    Jones S, Sudweeks S & Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22, 555561.
  • 231
    Lena C, Changeux JP & Mulle C (1993) Evidence for ‘preterminal’ nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 13, 26802688.
  • 232
    Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20, 9298.
  • 233
    Sher E, Chen Y, Sharples TJ, Broad LM, Benedetti G, Zwart R, McPhie GI, Pearson KH, Baldwinson T & De Filippi G (2004) Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity. Curr Top Med Chem 4, 283297.
  • 234
    Jensen AA, Frolund B, Liljefors T & Krogsgaard-Larsen P (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 48, 47054745.
  • 235
    Soliakov L & Wonnacott S (1996) Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes. J Neurochem 67, 163170.
  • 236
    Kulak JM, McIntosh JM, Yoshikami D & Olivera BM (2001) Nicotine-evoked transmitter release from synaptosomes: functional association of specific presynaptic acetylcholine receptors and voltage-gated calcium channels. J Neurochem 77, 15811589.
  • 237
    Turner TJ (2004) Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles. J Neurosci 24, 1132811336.
  • 238
    Sharma G & Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38, 929939.
  • 239
    Soliakov L & Wonnacott S (2001) Involvement of protein kinase C in the presynaptic nicotinic modulation of [3H]-dopamine release from rat striatal synaptosomes. Br J Pharmacol 132, 785791.
  • 240
    Cox ME & Parsons SJ (1997) Roles for protein kinase C and mitogen-activated protein kinase in nicotine-induced secretion from bovine adrenal chromaffin cells. J Neurochem 69, 11191130.
  • 241
    Levy RB & Aoki C (2002) Alpha7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. J Neurosci 22, 50015015.
  • 242
    Ji D, Lape R & Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31, 131141.
  • 243
    Arenella LS, Oliva JM & Jacob MH (1993) Reduced levels of acetylcholine receptor expression in chick ciliary ganglion neurons developing in the absence of innervation. J Neurosci 13, 45254537.
  • 244
    Corriveau RA & Berg DK (1993) Coexpression of multiple acetylcholine receptor genes in neurons: quantification of transcripts during development. J Neurosci 13, 26622671.
  • 245
    Devay P, Qu X & Role L (1994) Regulation of nAChR subunit gene expression relative to the development of pre- and postsynaptic projections of embryonic chick sympathetic neurons. Dev Biol 162, 5670.
  • 246
    Howard MJ, Gershon MD & Margiotta JF (1995) Expression of nicotinic acetylcholine receptors and subunit mRNA transcripts in cultures of neural crest cells. Dev Biol 170, 479495.
  • 247
    Smith J, Fauquet M, Ziller C & Le Douarin NM (1979) Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivo. Nature 282, 853855.
  • 248
    Greenberg ME, Ziff EB & Greene LA (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234, 8083.
  • 249
    Pich EM, Pagliusi SR, Tessari M, Talabot-Ayer D, Hooft van Huijsduijnen R & Chiamulera C (1997) Common neural substrates for the addictive properties of nicotine and cocaine. Science 275, 8386.
  • 250
    Harlan RE & Garcia MM (1998) Drugs of abuse and immediate–early genes in the forebrain. Mol Neurobiol 16, 221267.
  • 251
    Salminen O, Seppa T, Gaddnas H & Ahtee L (1999) The effects of acute nicotine on the metabolism of dopamine and the expression of Fos protein in striatal and limbic brain areas of rats during chronic nicotine infusion and its withdrawal. J Neurosci 19, 81458151.
  • 252
    Dunckley T & Lukas RJ (2003) Nicotine modulates the expression of a diverse set of genes in the neuronal SH-SY5Y cell line. J Biol Chem 278, 1563315640.
  • 253
    Kumer SC & Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67, 443462.
  • 254
    Gueorguiev VD, Zeman RJ, Meyer EM & Sabban EL (2000) Involvement of alpha7 nicotinic acetylcholine receptors in activation of tyrosine hydroxylase and dopamine beta-hydroxylase gene expression in PC12 cells. J Neurochem 75, 19972005.
  • 255
    Gueorguiev VD, Zeman RJ, Hiremagalur B, Menezes A & Sabban EL (1999) Differing temporal roles of Ca2+ and cAMP in nicotine-elicited elevation of tyrosine hydroxylase mRNA. Am J Physiol 276, C54C65.
  • 256
    Griffiths J & Marley PD (2001) Ca2+-dependent activation of tyrosine hydroxylase involves MEK1. Neuroreport 12, 26792683.
  • 257
    Gueorguiev VD, Cheng SY & Sabban EL (2006) Prolonged activation of cAMP-response element-binding protein and ATF-2 needed for nicotine-triggered elevation of tyrosine hydroxylase gene transcription in PC12 cells. J Biol Chem 281, 1018810195.
  • 258
    Alkondon M & Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145, 109120.
  • 259
    Alkondon M & Albuquerque EX (2001) Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J Neurophysiol 86, 30433055.
  • 260
    Alkondon M, Pereira EF & Albuquerque EX (2003) NMDA and AMPA receptors contribute to the nicotinic cholinergic excitation of CA1 interneurons in the rat hippocampus. J Neurophysiol 90, 16131625.
  • 261
    Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14, 311317.
  • 262
    Chang KT & Berg DK (2001) Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron 32, 855865.
  • 263
    Nakayama H, Numakawa T, Ikeuchi T & Hatanaka H (2001) Nicotine-induced phosphorylation of extracellular signal-regulated protein kinase and CREB in PC12h cells. J Neurochem 79, 489498.
  • 264
    Nakayama H, Shimoke K, Isosaki M, Satoh H, Yoshizumi M & Ikeuchi T (2006) Subtypes of neuronal nicotinic acetylcholine receptors involved in nicotine-induced phosphorylation of extracellular signal-regulated protein kinase in PC12h cells. Neurosci Lett 392, 101104.
  • 265
    Dajas-Bailador FA, Soliakov L & Wonnacott S (2002) Nicotine activates the extracellular signal-regulated kinase 1/2 via the alpha7 nicotinic acetylcholine receptor and protein kinase A, in SH-SY5Y cells and hippocampal neurones. J Neurochem 80, 520530.
  • 266
    Hu M, Liu QS, Chang KT & Berg DK (2002) Nicotinic regulation of CREB activation in hippocampal neurons by glutamatergic and nonglutamatergic pathways. Mol Cell Neurosci 21, 616625.
  • 267
    Dajas-Bailador FA, Lima PA & Wonnacott S (2000) The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca2+ dependent mechanism. Neuropharmacology 39, 27992807.
  • 268
    Ferchmin PA, Perez D, Eterovic VA & de Vellis J (2003) Nicotinic receptors differentially regulate N-methyl-d-aspartate damage in acute hippocampal slices. J Pharmacol Exp Ther 305, 10711078.
  • 269
    Zoli M, Picciotto MR, Ferrari R, Cocchi D & Changeux JP (1999) Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO J 18, 12351244.
  • 270
    Oddo S & LaFerla FM (2006) The role of nicotinic acetylcholine receptors in Alzheimer's disease. J Physiol (Paris) 99, 172179.
  • 271
    Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP & Reitz AB (2000) Beta-amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem 275, 56265632.
  • 272
    Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK et al. (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8, 10511058.
  • 273
    Corrigall WA, Coen KM, Adamson KL, Chow BL & Zhang J (2000) Response of nicotine self-administration in the rat to manipulations of mu-opioid and gamma-aminobutyric acid receptors in the ventral tegmental area. Psychopharmacology (Berlin) 149, 107114.
  • 274
    Laviolette SR & van der Kooy D (2003) Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry 8, 5059.
  • 275
    Kalivas PW (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev 18, 75113.
  • 276
    Mansvelder HD, Keath JR & McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33, 905919.
  • 277
    Klink R, de Kerchove d'Exaerde A, Zoli M & Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21, 14521463.
  • 278
    Laviolette SR & van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5, 5565.
  • 279
    McGehee DS, Heath MJ, Gelber S, Devay P & Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269, 16921696.
  • 280
    Girod R, Barazangi N, McGehee D & Role LW (2000) Facilitation of glutamatergic neurotransmission by presynaptic nicotinic acetylcholine receptors. Neuropharmacology 39, 27152725.
  • 281
    Kaiser S & Wonnacott S (2000) Alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [3H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58, 312318.
  • 282
    Oakman SA, Faris PL, Kerr PE, Cozzari C & Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15, 58595869.
  • 283
    Blaha CD, Allen LF, Das S, Inglis WL, Latimer MP, Vincent SR & Winn P (1996) Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus lesioned rats. J Neurosci 16, 714722.
  • 284
    Forster GL & Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12, 35963604.
  • 285
    Pidoplichko VI, DeBiasi M, Williams JT & Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390, 401404.
  • 286
    Whaley K, Lappin D & Barkas T (1981) C2 synthesis by human monocytes is modulated by a nicotinic cholinergic receptor. Nature 293, 580583.
  • 287
    Skok M, Grailhe R, Agenes F & Changeux JP (2006) The role of nicotinic acetylcholine receptors in lymphocyte development. J Neuroimmunol 171, 8698.
  • 288
    Sharma G & Vijayaraghavan S (2002) Nicotinic receptor signaling in nonexcitable cells. J Neurobiol 53, 524534.
  • 289
    Gahring LC & Rogers SW (2005) Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells. Aaps J 7, 885894.
  • 290
    Wang Y, Pereira EF, Maus AD, Ostlie NS, Navaneetham D, Lei S, Albuquerque EX & Conti-Fine BM (2001) Human bronchial epithelial and endothelial cells express alpha7 nicotinic acetylcholine receptors. Mol Pharmacol 60, 12011209.
  • 291
    Tournier JM, Maouche K, Coraux C, Zahm JM, Cloez-Tayarani I, Nawrocki-Raby B, Bonnomet A, Burlet H, Lebargy F, Polette M et al. (2006) alpha3alpha5beta2-Nicotinic acetylcholine receptor contributes to the wound repair of the respiratory epithelium by modulating intracellular calcium in migrating cells. Am J Pathol 168, 5568.
  • 292
    Chernyavsky AI, Arredondo J, Marubio LM & Grando SA (2004) Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. J Cell Sci 117, 56655679.
  • 293
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW & Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458462.
  • 294
    Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Yang H, Ulloa L & Al-Abed Y (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384388.
  • 295
    Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Metz C, Miller EJ, Tracey KJ et al. (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10, 12161221.
  • 296
    Ulloa L (2005) The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 4, 673684.
  • 297
    Lotze MT & Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5, 331342.
  • 298
    Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, Squadrito G, Minutoli L, Bertolini A, Marini R et al. (2003) Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation 107, 11891194.
  • 299
    Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey KJ, Al-Abed Y & Metz CN (2005) Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 201, 11131123.
  • 300
    de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM et al. (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6, 844851.
  • 301
    Villablanca AC (1998) Nicotine stimulates DNA synthesis and proliferation in vascular endothelial cells in vitro. J Appl Physiol 84, 20892098.
  • 302
    Macklin KD, Maus AD, Pereira EF, Albuquerque EX & Conti-Fine BM (1998) Human vascular endothelial cells express functional nicotinic acetylcholine receptors. J Pharmacol Exp Ther 287, 435439.
  • 303
    Heeschen C, Weis M, Aicher A, Dimmeler S & Cooke JP (2002) A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest 110, 527536.
  • 304
    Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL & Cooke JP (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7, 833839.
  • 305
    Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E & Chellappan S (2006) Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA 103, 63326337.
  • 306
    Dasgupta P, Rastogi S, Pillai S, Ordonez-Ercan D, Morris M, Haura E & Chellappan S (2006) Nicotine induces cell proliferation by β-arrestin-mediated activation of Src and Rb–Raf-1 pathways. J Clin Invest 116, 22082217.
  • 307
    Peng JH, Fryer JD, Hurst RS, Schroeder KM, George AA, Morrissy S, Groppi VE, Leonard SS & Lukas RJ (2005) High-affinity epibatidine binding of functional, human alpha7-nicotinic acetylcholine receptors stably and heterologously expressed de novo in human SH-EP1 cells. J Pharmacol Exp Ther 313, 2435.
  • 308
    Zhao L, Kuo Y-P, George A, Peng J-H, Purandare MS, Schroeder K, Lukas R & Wu J (2003) Functional properties of homomeric, human alpha 7-nicotinic acetylcholine receptors heterologously expressed in the SH-EP1 human epithelial cell line. J Pharmacol Exp Ther 305, 11321141.
  • 309
    Aztiria EM, Sogayar MC & Barrantes FJ (2000) Expression of a neuronal nicotinic acetylcholine receptor in insect and mammalian host cell systems. Neurochem Res 25, 171180.
  • 310
    Sweileh W, Wenberg K, Xu J, Forsayeth J, Hardy S & Loring RH (2000) Multistep expression and assembly of neuronal nicotinic receptors is both host-cell- and receptor-subtype-dependent. Brain Res Mol Brain Res 75, 293302.
  • 311
    Person AM, Bills KL, Liu H, Botting SK, Lindstrom J & Wells GB (2005) Extracellular domain nicotinic acetylcholine receptors formed by alpha4 and beta2 subunits. J Biol Chem 280, 3999040002.
  • 312
    Wells GB, Anand R, Wang F & Lindstrom J (1998) Water-soluble nicotinic acetylcholine receptor formed by alpha7 subunit extracellular domains. J Biol Chem 273, 964973.
  • 313
    Zhou Y, Nelson ME, Kuryatov A, Choi C, Cooper J & Lindstrom J (2003) Human alpha4beta2 acetylcholine receptors formed from linked subunits. J Neurosci 23, 90049015.
  • 314
    Groot-Kormelink PJ, Broadbent S, Beato M & Sivilotti LG (2006) Constraining the expression of nicotinic acetylcholine receptors by using pentameric constructs. Mol Pharmacol 69, 558563.
  • 315
    Craig PJ, Bose S, Zwart R, Beattie RE, Folly EA, Johnson LR, Bell E, Evans NM, Benedetti G, Pearson KH et al. (2004) Stable expression and characterisation of a human alpha 7 nicotinic subunit chimera: a tool for functional high-throughput screening. Eur J Pharmacol 502, 3140.
  • 316
    Fischer M, Corringer PJ, Schott K, Bacher A & Changeux JP (2001) A method for soluble overexpression of the alpha7 nicotinic acetylcholine receptor extracellular domain. Proc Natl Acad Sci USA 98, 35673570.
  • 317
    Utkin YN, Kukhtina VV, Kryukova EV, Chiodini F, Bertrand D, Methfessel C & Tsetlin VI (2001) ‘Weak toxin’ from Naja kaouthia is a nontoxic antagonist of alpha 7 and muscle-type nicotinic acetylcholine receptors. J Biol Chem 276, 1581015815.
  • 318
    Conti-Fine BM, Milani M & Kaminski HJ (2006) Myasthenia gravis: past, present, and future. J Clin Invest 116, 28432854.
  • 319
    Vincent A, Palaceb J & Hilton J (2001) Myasthenia gravis. Lancet 357, 21222128.
  • 320
    Engel AG & Sine SM (2005) Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol 5, 308321.
  • 321
    Mossman S, Vincent A & Newson-Davis J (1986) Myasthenia gravis without acetylcholine receptor antibody: a distinct disease entity. Lancet 18, 116119.
  • 322
    Hoch W, McConville J & Helms S (2001) Autoantibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7, 365368.
  • 323
    Romi F, Skeie GO, Gilhus NE & Aarli JA (2005) Striational antibodies in myasthenia gravis: reactivity and possible clinical significance. Arch Neurol 62, 442446.
  • 324
    Poulas K, Tsibri E, Kokla A, Papanastasiou D, Tsouloufis T, Marinou M, Tsantili P, Papapetropoulos T & Tzartos SJ (2001) Epidemiology of seropositive myasthenia gravis in Greece. J Neurol Neurosurg Psychiatry 71, 352356.
  • 325
    Vincent A, Beeson D & Lang B (2000) Molecular targets for autoimmune and genetic disorders of neuromuscular transmission. Eur J Biochem 267, 67176728.
  • 326
    Patrick J & Lindstrom J (1973) Autoimmune response to acetylcholine receptor. Science 180, 871872.
  • 327
    Lindstrom JM (1999) Experimental induction and treatment of myasthenia gravis. In Myasthenia Gravis and Myasthenic Disorders (Engel A, ed.), pp. 111130. Oxford University Press, Oxford.
  • 328
    Lindstrom J, Engel A, Seybold M, Lennon V & Lambert E (1976) Pathological mechanisms in EAMG II: passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies. J Exp Med 144, 739753.
  • 329
    Tzartos S, Hochschwender S, Vasquez P & Lindstrom J (1987) Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol 15, 185194.
  • 330
    Weinberg C & Hall Z (1979) Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc Natl Acad Sci USA 76, 504508.
  • 331
    Mesnard-Rouiller L, Bismith J, Wakkach A, Poea-Guyon S & Berrih-Aknin S (2004) Thymic myoid cells express high levels of muscle genes. J Neuroimmunol 148, 97105.
  • 332
    Levinson AI, Song D, Gaulton G & Zheng Y (2004) The intrathymic pathogenesis of myasthenia gravis. Clin Dev Immunol 11, 215220.
  • 333
    Colombara M, Antonini V, Riviera AP, Mainiero F, Strippoli R, Merola M, Fracasso G, Poffe O, Brutti N, Tridente G et al. (2005) Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J Immunol 175, 70217028.
  • 334
    Poea-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, Bidault J, Tzartos S & Berrih-Aknin S (2005) Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol 174, 59415949.
  • 335
    Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, Novellino L, Cornelio F & Mantegazza R (2005) Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol 167, 129139.
  • 336
    Inoue M, Okumura M, Miyoshi S, Shiono H, Fukuhara K, Kadota Y, Shirakura R & Matsuda H (1999) Impaired expression of MHC class II molecules in response to interferon-gamma (IFN-gamma) on human thymoma neoplastic epithelial cells. Clin Exp Immunol 117, 17.
  • 337
    Sommer N, Willcox N, Harcourt GC & Newson-Davis J (1990) Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor-reactive T cells. Ann Neurol 28, 312319.
  • 338
    Nagvekar N, Moody AM, Moss P, Roxanis I, Curnow J, Beeson D, Pantic N, Newson-Davis J, Vincent A & Willcox N (1998) A pathogenetic role for the thymoma in myasthenia gravis. Autosensitization of IL-4- producing T-cell clones recognizing extracellular acetylcholine receptor epitopes presented by minority class II isotypes. J Clin Invest 101, 22682277.
  • 339
    Maiti PK, Feferman T, Im SH, Souroujon MC & Fuchs S (2004) Immunosuppression of rat myasthenia gravis by oral administration of a syngeneic acetylcholine receptor fragment. J Neuroimmunol 152, 112120.
  • 340
    Cohen-Kaminsky S & Jambou F (2005) Prospects for a T-cell receptor vaccination against myasthenia gravis. Expert Rev Vaccines 4, 473492.
  • 341
    Tzartos SJ, Sophianos D & Efthimiadis A (1985) Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera. J Immunol 134, 23432349.
  • 342
    Papanastasiou D, Poulas K, Kokla A & Tzartos SJ (2000) Prevention of passively transferred experimental autoimmune myasthenia gravis by Fab fragments of monoclonal antibodies directed against the main immunogenic region of the acetylcholine receptor. J Neuroimmunol 104, 124132.
  • 343
    Fostieri E, Tzartos SJ, Berrih-Aknin S, Beeson D & Mamalaki A (2005) Isolation of potent human Fab fragments against a novel highly immunogenic region on human muscle acetylcholine receptor, which protect the receptor from myasthenic autoantibodies. Eur J Immunol 35, 632643.
  • 344
    Graus YF, de Baets MH, Parren PW, Berrih-Aknin S, Wokke J, van Breda Vriesman PJ & Burton DR (1997) Human anti-nicotinic acetylcholine receptor recombinant Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. J Immunol 158, 19191929.
  • 345
    Aricha R, Feferman T, Souroujon MC & Fuchs S (2006) Overexpression of phosphodiesterases in experimental autoimmune myasthenia gravis: suppression of disease by a phosphodiesterase inhibitor. FASEB J 20, 374376.
  • 346
    Hantai D, Richard P, Koenig J & Eymand B (2004) Congenital myasthenic syndromes. Curr Opin Neurol 17, 539551.
  • 347
    Ohno K & Engel AG (2004) Congenital myasthenic syndromes: gene mutations. Neuromusc Disord 14, 117122.
  • 348
    Engel AG (1994) Congenital myasthenic syndromes. Neurol Clinics North Am 12, 401436.
  • 349
    Engel AG (1999) Congenital myasthenic syndromes. J Child Neurol 14, 3841.
  • 350
    Beeson D, Hantai D, Lochmuller H & Engel AG (2005) 126th International Workshop: congenital myasthenic syndromes, 24–26 September 2004, Naarden, the Netherlands. Neuromusc Disord 15, 498512.
  • 351
    Milone M, Wang HL, Ohno K, Fukudome T, Pruitt JN, Bren N, Sine SM & Engel AG (1997) Slow-channel syndrome caused by enhanced activation, desensitization, and agonist binding affinity due to mutation in the M2 domain of the acetylcholine receptor alpha subunit. J Neurosci 17, 56515665.
  • 352
    Croxen R, Newland C, Beeson D, Oosterhuis H, Chauplanaz G, Vincent A & Newsom-Davis J (1997) Mutations in different functional domains of the human muscle acetylcholine receptor ε subunit in patients with the slow-channel congenital myasthenic syndrome. Hum Mol Genet 6, 767774.
  • 353
    Wang HL, Auerbach A, Bren N, Ohno K, Engel AG & Sine SM (1997) Mutation in the M1 domain of the acetylcholine receptor alpha subunit decreases the rate of agonist dissociation. J Gen Physiol 109, 757766.
  • 354
    Croxen R, Hatton C, Shelley C, Brydson M, Chauplannaz G, Oosterhuis H, Vincent A, Newsom-Davis J, Colquhoun D & Beeson D (2002) Recessive inheritance and variable penetrance of slow-channel congenital myasthenic syndromes. Neurology 59, 162168.
  • 355
    Engel AG, Ohno Κ, Shen XM & Sine SM (2003) Congenital myasthenic syndromes: multiple molecular targets at the neuromuscular junction. Ann NY Acad Sci 998, 138160.
  • 356
    Akabas MH, Kaufmann C, Archdeacon P & Karlin A (1994) Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron 13, 919927.
  • 357
    Wang HL, Milone M, Ohno K, Shen XM, Tsujino A, Batocchi AP, Tonali P, Brengman JM, Engel AG & Sine SM (1999) Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nat Neurosci 2, 226233.
  • 358
    Milone M, Wang HL, Ohno K, Prince RJ, Shen XM, Brengman JM, Griggs RC & Engel AG (1998) Mode switching kinetics produced by a naturally occurring mutation in the cytoplasmic loop of the human acetylcholine receptor subunit. Neuron 20, 575588.
  • 359
    Brownlow S, Webster R, Croxen R, Brydson M, Neville B, Lin JP, Vincent A, Newsom-Davis J & Beeson D (2001) Acetylcholine receptor subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita. J Clin Invest 108, 125130.
  • 360
    Shen XM, Ohno K, Milone M, Brengman JM, Spilsbury PR & Engel AG (2001) Fast-channel syndrome. Neurology 56, A60.
  • 361
    Middleton L, Ohno K, Christodoulou K, Brengman J, Milone M, Neocleous V, Serdaroglu P, Deymeer F, Ozdemir C, Mubaidin A et al. (1999) Chromosome 17p-linked myasthenias stem from defects in the acetylcholine receptor epsilon-subunit gene. Neurology 53, 10761082.
  • 362
    Abicht A, Stucka R, Karcagi V, Herczegfalvi A, Horvath R, Mortier W, Schara U, Ramaekers V, Jost W, Brunner J et al. (1999) A common mutation (ε1267delG) in congenital myasthenic patients of Gipsy ethnic origin. Neurology 53, 15641569.
  • 363
    Croxen R, Newland C, Betty M, Vincent A, Newsom-Davis J & Beeson D (1999) Novel functional 3-subunit polypeptide generated by a single nucleotide deletion in acetylcholine receptor deficiency congenital myasthenic syndrome. Ann Neurol 46, 639647.
  • 364
    Nichols P, Croxen R, Vincent A, Rutter R, Hutchinson M, Newson-Davis J & Beeson D (1999) Mutation in the AChR ε-subunit promoter in CMS. Ann Neurol 45, 439443.
  • 365
    Ohno K, Anlar B & Engel AG (1999) CMS caused by a mutation in the Ets-binding site of the promoter region of the acetylcholine receptor ε-subunit gene. Neuromusc Disord 9, 131135.
  • 366
    Ealing J, Webster R, Browlow S, Abdelgany A, Oosterhuis H, Muntoni F, Vaux DJ, Vincent A & Beeson D (2002) Mutations in congenital myasthenic syndromes reveal an ε subunit C-terminal cysteine, C470, crucial for maturation and surface expression of adult AChR. Hum Mol Genet 11, 30873096.
  • 367
    Ohno K, Brengman J, Tsujino A & Engel AG (1998) Human endplate AChE deficiency caused by mutations in the collagen like tail subunit of the asymmetric enzyme. Proc Natl Acad Sci USA 95, 96549659.
  • 368
    Morar B, Gresham D, Angelishera D, Tourner I, Gooding R, Guergueltchera V & Schmidt C (2004) Mutation history of the Roma/Gypsies. Am J Hum Genet 75, 596609.
  • 369
    Harper CM & Engel AG (2000) Treatment of 31 congenital myasthenic syndrome patients with 3,4-diaminopyridine. Neurology 54, A395.
  • 370
    Ohno K, Engel AG, Shen XM, Selcen D, Brengman J, Harper CM, Tsujino A & Milone M (2002) Rapsyn mutations in humans cause endplate acetylcholine-receptor deficiency and myasthenic syndrome. Am J Hum Genet 70, 875885.
  • 371
    Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauche S, Prioleau C, Herbst R, Goillot E, Ioos C et al. (2004) MuSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet 13, 32293240.
  • 372
    Blennow K, de Leon MJ & Zetterberg H (2006) Alzheimer's disease. Lancet 368, 387403.
  • 373
    Terry AV Jr & Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306, 821827.
  • 374
    Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price DL & Kellar KJ (1986) Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Res 371, 146151.
  • 375
    Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T & Akaike A (2001) Alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block Abeta-amyloid-induced neurotoxicity. J Biol Chem 276, 1354113546.
  • 376
    Wang HY, Lee DH, Davis CB & Shank RP (2000) Amyloid peptide Abeta(1–42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 75, 11551161.
  • 377
    Lamb PW, Melton MA & Yakel JL (2005) Inhibition of neuronal nicotinic acetylcholine receptor channels expressed in Xenopus oocytes by beta-amyloid1–42 peptide. J Mol Neurosci 27, 1321.
  • 378
    Lee PN (1994) Smoking and Alzheimer's disease: a review of the epidemiological evidence. Neuroepidemiology 13, 131144.
  • 379
    de Leon J, Dadvand M, Canuso C, White AO, Stanilla JK & Simpson GM (1995) Schizophrenia and smoking: an epidemiological survey in a state hospital. Am J Psychiatry 152, 453455.
  • 380
    Adler LE, Hoffer LD, Wiser A & Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150, 18561861.
  • 381
    Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P et al. (2002) Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry 59, 10851096.
  • 382
    Freedman R, Hall M, Adler LE & Leonard S (1995) Evidence in post-mortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38, 2233.
  • 383
    Barkley RA, Fischer M, Smallish L & Fletcher K (2002) The persistence of attention-deficit/hyperactivity disorder into young adulthood as a function of reporting source and definition of disorder. J Abnorm Psychol 111, 279289.
  • 384
    Pomerleau OF, Downey KK, Stelson FW & Pomerleau CS (1995) Cigarette smoking in adult patients diagnosed with attention deficit hyperactivity disorder. J Substance Abuse 7, 373378.
  • 385
    Blondel A, Sanger DJ & Moser PC (2000) Characterisation of the effects of nicotine in the five-choice serial reaction time task in rats: antagonist studies. Psychopharmacology (Berlin) 149, 293305.
  • 386
    Levin ED, Christopher NC, Weaver T, Moore J & Brucato F (1999) Ventral hippocampal ibotenic acid lesions block chronic nicotine-induced spatial working memory improvement in rats. Brain Res Cogn Brain Res 7, 405410.
  • 387
    Grottick AJ & Higgins GA (2000) Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117, 197208.
  • 388
    Levin ED & Rezvani AH (2000) Development of nicotinic drug therapy for cognitive disorders. Eur J Pharmacol 393, 141146.
  • 389
    Wilens TE, Biederman J, Spencer TJ, Bostic J, Prince J, Monuteaux MC, Soriano J, Fine C, Abrams A, Rater M et al. (1999) A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am J Psychiatry 156, 19311937.
  • 390
    Ueno K, Togashi H, Matsumoto M, Ohashi S, Saito H & Yoshioka M (2002) Alpha4beta2 nicotinic acetylcholine receptor activation ameliorates impairment of spontaneous alternation behavior in stroke-prone spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder. J Pharmacol Exp Ther 302, 95100.
  • 391
    Picciotto MR & Zoli M (2002) Nicotinic receptors in aging and dementia. J Neurobiol 53, 641655.
  • 392
    Tanner CM, Goldman SM, Aston DA, Ottman R, Ellenberg J, Mayeux R & Langston JW (2002) Smoking and Parkinson's disease in twins. Neurology 58, 581588.
  • 393
    Schneider JS, Van Velson M, Menzaghi F & Lloyd GK (1998) Effects of the nicotinic acetylcholine receptor agonist SIB-1508Y on object retrieval performance in MPTP-treated monkeys: comparison with levodopa treatment. Ann Neurol 43, 311317.
  • 394
    Xie YX, Bezard E & Zhao BL (2005) Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria. J Biol Chem 280, 3240532412.
  • 395
    Grando SA (2000) Autoimmunity to keratinocyte acetylcholine receptor in pemphigus. Dermatology 201, 290295.
  • 396
    Grando SA (2001) Receptor-mediated action of nicotine in human skin. Int J Dermatol 40, 691693.
  • 397
    Vu TN, Lee TX, Ndoye A, Shultz LD, Pittelkow MR, Dahl MV, Lynch PJ & Grando SA (1998) The pathophysiological significance of nondesmoglein targets of pemphigus autoimmunity. Development of antibodies against keratinocyte cholinergic receptors in patients with pemphigus vulgaris and pemphigus foliaceus. Arch Dermatol 134, 971980.
  • 398
    Low PA, Vernino S & Suarez G (2003) Autonomic dysfunction in peripheral nerve disease. Muscle Nerve 27, 646661.
  • 399
    Vernino S, Adamski J, Kryzer TJ, Fealey RD & Lennon VA (1998) Neuronal nicotinic ACh receptor antibody in subacute autonomic neuropathy and cancer-related syndromes. Neurology 50, 18061813.
  • 400
    Vernino S, Low PA, Fealey RD, Stewart JD, Farrugia G & Lennon VA (2000) Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N Engl J Med 343, 847855.
  • 401
    Lennon VA, Ermilov LG, Szurszewski JH & Vernino S (2003) Immunization with neuronal nicotinic acetylcholine receptor induces neurological autoimmune disease. J Clin Invest 111, 907913.
  • 402
    Vernino S, Ermilov LG, Sha L, Szurszewski JH, Low PA & Lennon VA (2004) Passive transfer of autoimmune autonomic neuropathy to mice. J Neurosci 24, 70377042.
  • 403
    Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, Scheffer IE & Berkovic SF (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11, 201203.
  • 404
    Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R, Iversen P, Bauman M & Perry E (2002) Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 125, 14831495.
  • 405
    Martin-Ruiz CM, Lee M, Perry RH, Baumann M, Court JA & Perry EK (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res 123, 8190.
  • 406
    Buisson B & Bertrand D (2002) Nicotine addiction: the possible role of functional upregulation. Trends Pharmacol Sci 23, 130136.
  • 407
    Balfour DJK (2004) The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens. Nicotine Tob Res 6, 899912.
  • 408
    Sciamanna MA, Griesmann GE, Williams CL & Lennon VA (1997) Nicotinic acetylcholine receptors of muscle and neuronal (alpha7) types coexpressed in a small cell lung carcinoma. J Neurochem 69, 23022311.
  • 409
    Sandall DW, Satkunanathan N, Keays DA, Polidano MA, Liping X, Pham V, Down JG, Khalil Z, Livett BG & Gayler KR (2003) A novel alpha-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42, 69046911.
  • 410
    Tonstad S (2007) Varenicline for smoking cessation. Expert Rev Neurother 7, 121127.