SEARCH

SEARCH BY CITATION

References

  • 1
    Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18, 149158.
  • 2
    Woese CR, Kandler O & Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87, 45764579.
  • 3
    Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95, 68546859.
  • 4
    Miller SL & Lazcano A (1995) The origin of life − did it occur at high temperatures? J Mol Evol 41, 689692.
  • 5
    Forterre P (1996) A hot topic: the origin of hyperthermophiles. Cell 85, 789792.
  • 6
    Brock TD, Brock KM, Belly RT & Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living in low pH and high temperature. Arch Mikrobiol 84, 5468.
  • 7
    Stetter KO (2006) History of discovery of the first hyperthermophiles. Extremophiles 10, 357362.
  • 8
    Kashefi K & Lovley DR (2003) Extending the upper temperature limit for life. Science 301, 934.
  • 9
    Koutsopoulos S, van der Oost J & Norde W (2005) Temperature dependant structural and functional features of a hyperthermostable enzyme using elastic neutron scattering. Proteins 61, 377384.
  • 10
    Hickey DA & Singer GAC (2004) Genomic and proteomic adaptations to growth at high temperature. Genome Biol 5, 117121.
  • 11
    Russell AP & Holleman DS (1974) The thermal denaturation of DNA: average length and composition of denatured areas. Nucleic Acids Res 1, 959978.
  • 12
    Musto H, Naya H, Zavala A, Romero H, Alvarez-Valin F & Bernardi G (2004) Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. EJB Lett 573, 7377.
  • 13
    Basak S & Ghosh TC (2005) On the origin of genomic adaptation at high temperature for prokaryotic organisms. Biochem Biophys Res Commun 330, 629632.
  • 14
    Galtier N & Lobry JR (1997) Relationships between genomic GC content, RNA secondary structures and optimal growth temperature in prokaryotes. J Mol Evol 44, 632636.
  • 15
    Wang H-C, Xia X & Hickey D (2006) Thermal adaptations of the small subunit ribosomal RNA gene: a comparative study. J Mol Evol 63, 120125.
  • 16
    Grogan DW (1998) Hyperthermophiles and the problem of DNA instability. Mol Microbiol 28, 10431049.
  • 17
    Daniel RM & Cowan DA (2000) Biomolecular stability and life at high temperatures. Cell Mol Life Sci 57, 250264.
  • 18
    Atomi H, Matsumi R & Imanaka T (2004) Reverse gyrase is not a prerequisite for hyperthermophilic life. J Bacteriol 186, 48294833.
  • 19
    Vielle C & Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol Mol Biol R 65, 143.
  • 20
    Chan MK, Mukund S, Kletzin A, Adams MW & Rees DC (1995) Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267, 14631469.
  • 21
    Salminen T, Teplyakov A, Kankare J, Cooperman BS, Lahti R & Goldman A (1996) An unusual route to thermostability disclosed by the comparison of Thermus thermophilus and Escherichia coli inorganic pyrophosphatases. Protein Sci 5, 10141025.
  • 22
    Lee D-W, Hong Y-H, Choe E-A, Lee S-J, Kim S-B, Lee H-S, Oh J-W, Shin H-H & Pyun Y-R (2005) A thermodynamic study of mesophilic, thermophilic and hyperthermophilic 1-arabinose isomerases: The effects of divalent metal ions on protein stability at elevated temperatures. EJB Lett 579, 12611266.
  • 23
    Britton KL, Baker PJ, Borges KM, Engel PC, Pasquo A, Rice DW, Robb FT, Scandurra R, Stillman TJ & Yip KSP (1995) Insights into thermal stability from a comparison of the glutamate-dehydrogenases from Pyrococcus furiosus and Thermococcus litoralis. Eur J Biochem 229, 688695.
    Direct Link:
  • 24
    Tanaka Y, Tsumoto K, Yasutake Y, Umetsu M, Yao M, Fukada H, Tanaka I & Kumagai I (2004) How oligomerization contributes to the thermostability of an Archaeon protein: protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii. J Biol Chem 279, 3295732967.
  • 25
    Karlstrom M, Steen IH, Madern D, Fedoy A-E, Birkeland N-K & Ladenstein R (2006) The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. EJB J 273, 28512868.
  • 26
    Russell RJM, Ferguson JMC, Haugh DW, Danson MJ & Taylor GL (1997) The crystal structure of citrate synthase from the hyperthermophilic bacterium Pyrococcus furiosus at 1.9 ? resolution. Biochemistry 36, 99839994.
  • 27
    Ramos A, Raven NDH, Sharp RJ, Bartolucci S, Rossi M, Cannio R, Lebbink J, van der Oost J, deVos WM & Santos H (1997) Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl Env Microbiol 63, 40204025.
  • 28
    Eggers DK & Valentine JS (2001) Crowding and hydration effects on protein conformation: a study with sol-gel encapsulated proteins. J Mol Biol 314, 911922.
  • 29
    Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11, 114119.
  • 30
    Tanaka T, Sawano M, Ogasahara K, Sakaguchi Y, Bagautdinov B, Katoh E, Kuroishi C, Shinkai A, Yokoyama S & Yutani K (2006) Hyper-thermostability of CutA1 protein, with a denaturation temperature of nearly 150oC. EJB Lett 580, 42244230.
  • 31
    Elcock AH (1998) The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J Mol Biol 284, 489502.
  • 32
    Szilagyi A & Zavodszky P (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Struct Fold Des 8, 493504.
  • 33
    Arnott MA, Michael RA, Thompson CR, Hough DW & Danson MJ (2000) Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic Archaea, Thermoplasma acidophilum and Pyrococcus furiosus. J Mol Biol 304, 657668.
  • 34
    Tehei M, Madern D, Franzetti B & Zaccai G (2005) Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature. J Biol Chem 280, 4097440979.
  • 35
    Brock TD & Freeze H (1969) Thermus aquaticus gen. n. & sp. N., a nonsporulating extreme thermophile. J Bacteriol 98, 289297.
  • 36
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB & Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487491.
  • 37
    Looger LL, Dwyer MA, Smith JJ & Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423, 185190.
  • 38
    Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A & Pedersen AH (1999) Directed evolution of a fungal peroxidase. Nat Biotechnol 17, 379384.
  • 39
    Lehmann M, Pasamontes L, Lassen SF & Wyss M (2000) The consensus concept for thermostability engineering of proteins. Biochim Biophys Acta − Prot Struct Mol Enzymol 1543, 408415.
  • 40
    Crameri A, Whitehorn EA, Tate E & Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14, 315319.
  • 41
    Bouzas TD, Barros-Velazquez J & Villa TG (2006) Industrial applications of hyperthermophilic enzymes: a review. Prot Pept Lett 13, 445451.
  • 42
    Bauer MW, Driskill LE & Kelly RM (1998) Glycosyl hydrolases from hyperthermophilic microorganisms. Curr Opin Biotechn 9, 141145.
  • 43
    Haki GD & Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Biores Technol 89, 1734.
  • 44
    Kim MS, Park JT, Kim YW, Lee HS, Nyawira R, Shin HS, Park CS, Yoo SH, Kim YR, Moon TW et al. (2004) Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol 70, 39333940.
  • 45
    Piller K, Daniel PM & Petach HH (1996) Properties and stabilization of an extracellular alpha-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: enzyme activity at 130oC. Biochim Biophys Acta − Prot Struct Molec Enzymol 1292, 197205.
  • 46
    Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19, 261278.
  • 47
    Cannio R, Di Prizito N, Rossi M & Morana A (2004) A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8, 117124.
  • 48
    Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M & Imanaka T (1997) Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol 63, 45044510.
  • 49
    Lundberg KS, Shoemaker DD, Adams MWW, Short JM, Sorge JA & Mathur EJ (1991) High-fidelity amplification using a thermostable DNA-polymerase isolated from Pyrococcus-furiosus. Gene 108, 16.
  • 50
    Matsumoto K, Kazuno Y, Higashimura N, Ohshima T & Sakuraba H (2006) Process for Production of Chiral Hydroxyaldehydes. Eur Patent Appication No. 1 734 129. A1.
  • 51
    Rao SV, Anderson KW & Bachas LG (1998) Oriented immobilization of proteins. Microchim Acta 128, 127143.
  • 52
    Grazu V, Abian O, Mateo C, Batista-Viera F, Fernandez-Lafuente R & Guisan JM (2005) Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol supports. Biotechnol Bioengin 90, 597605.
  • 53
    Eggers DK & Valentine JS (2000) Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10, 250261.
  • 54
    Yan M, Ge J, Liu Z & Ouyang P (2006) Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J Am Chem Soc 128, 1100811009.
  • 55
    Lee C-H, Lang J, Yen C-W, Shih P-C, Lin T-S & Mou C-Y (2005) Enhancing stability and oxidation activity of cytochrome c by immobilization in the nanchannels of mesoporous aluminosilicates. J Phys Chem B 109, 1227712286.
  • 56
    Norde W & Zoungrana T (1998) Surface-induced changes in the structure and activity of enzymes physically immobilized at solid/liquid interfaces. Biotechnol Appl Biochem 28, 133143.
  • 57
    Norde W (2003) Driving forces for protein adsorption at solid surfaces. In Biopolymers at Interfaces, 2nd edn (Malmsten M, ed.). Marcel Dekker, Inc., New York, NY.
  • 58
    Ladero M, Ruiz G, Pessela BCC, Vian A, Santos A & Garcia-Ochoa F (2006) Thermal and pH inactivation of an immobilized thermostable beta-glactosidase from Thermus Sp. Strain T2: comparison to the free enzyme. Biochem Eng J 31, 1424.
  • 59
    Simpson HD, Haufler UR & Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J 277, 413417.
  • 60
    Koutsopoulos S, van der Oost J & Norde W (2004) Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases heat stability. Langmuir 20, 64016406.
  • 61
    Koutsopoulos S, van der Oost J & Norde W (2005) Structural features of an hyperthermostable endo-b-1,3-glucanase in solution and adsorbed on ‘invisible’ particles. Biophys J 88, 467474.
  • 62
    Unsworth LD, Sheardown H & Brash JL (2005) Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density. Langmuir 21, 10361041.
  • 63
    van Oss CJ (2003) Interfacial Forces in Aqueous Media. Marcel Dekker, Inc, New York, NY.
  • 64
    Koutsopoulos S, Tjeerdsma A-M, Lieshout JFT, van der Oost J & Norde W (2005) In situ structure and activity studies of an enzyme adsorbed on spectroscopically undetectable particles. Biomacromolecules 6, 11761184.
  • 65
    Koutsopoulos S, van der Oost J & Norde W (2005) Conformational studies of a hyperthermostable enzyme. EJB J 272, 54845496.
  • 66
    Svendsen A, Clausen IG, Patkar SA, Kim B & Thellersen M (1997) Protein engineering of microbial lipases industrial interest. Methods Enzymol 284, 317340.
  • 67
    Brady L, Brzozowski AM, Derwenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L et al. (1990) A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature 343, 767770.
  • 68
    Palomo JM, Munoz G, Fernandex-Lorente G, Mateo C, Fernandex-Lafuente R & Guisan JM (2002) Interfacial adsorption of lipases on a very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J Mol Catal B Enzym 19–20, 279286.
  • 69
    Wilson L, Palomo JM, Fernandez-Lorente G, Illanes A, Guisan JM & Fernandez-Lafuente R (2006) Effect of lipase–lipase interactions in the activity, stability and specificity of a lipase from Alcaligenes sp. Enzyme Microb Tech 39, 259264.
  • 70
    Barrias CC, Martins MCL, Miranda MCS & Barbosa MA (2005) Adsorption of a therapeutic enzyme to self-assembled monolayers: effect of surface chemistry and solution pH on the amount and activity of adsorbed enzyme. Biomaterials 26, 26952704.
  • 71
    Haynes CA & Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B Biointerfaces 2, 517566.
  • 72
    Giacomelli CE & Norde W (2001) The adsorption–desorption cycle. Reversibility of the BSA-silica system. J Coll Interf Sci 233, 234240.
  • 73
    Pinheiro HM, Kennedy JF & Cabral JMS (1996) Immobilized enzymes and cells. In Interfacial Phenomena and Bioproducts. (Brash JL & Wojciechowski PW, eds), pp. 311350. Marcel Dekker, NewYork, NY.
  • 74
    Mateo C, Fernandez-Lorente G, Abian O, Fernandez-Lafuente R & Guisan JM (2000) Multifunctional epoxy supports: a new tool to improve the covalent immobilization of proteins. the promotion of physical adsorptions of proteins on the supports before their covalent linkage. Biomacromolecules 1, 739745.
  • 75
    Fernandez-Lafuente R, Cowan DA & Wood ANP (1995) Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzyme Microbial Technol 17, 366372.
  • 76
    Saito T, Yoshida Y, Kawashima K, Lin KH, Inagaki H, Maeda S & Kobayashi T (1997) Influence of aldehyde groups on the thermostability of an immobilized enzyme on an inorganic support. Mater Sci Eng C − Biomimetic Supramol Syst C5, 149152.
  • 77
    Pierre AC (2004) The sol-gel encapsulation of enzymes. Biocatal Biotransform 22, 145170.
  • 78
    Bolis D, Politou AS, Kelly G, Pastore A & Temussi PA (2003) Protein stability in nanocages: a novel approach for influencing protein stability by molecular confinement. J Mol Biol 336, 203212.
  • 79
    Patil AJ, Muthusamy E & Mann S (2004) Synthesis and self-assembly of organoclay-wrapped biomolecules. Angew Che Int Ed 43, 49284933.
  • 80
    Patil AJ, Muthusamy E & Mann S (2005) Fabrication of functional protein–organoclay lamellar nanocomposites by biomolecule-induced assembly of exfoliated aminopropyl-functionalized magnesium phyllosilicates. J Mater Chem 15, 38383843.
  • 81
    Kohda J, Kawanishi H, Suehara K-I, Nakano Y & Yano T (2006) Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin. J Biosci Bioeng 101, 131136.
  • 82
    Coradin T, Coupe A & Livage J (2003) Intercalation of biomolecules in the MnPS3 layered phase. J Mater Chem 13, 705707.
  • 83
    Brown SH, Costantino HR & Kelly RM (1990) Characterization of amylolytic enzyme-activities associated with the hyperthermophilic archaebacterium pyrococcus-furiosus. Appl Environ Microbiol 56, 19851991.
  • 84
    Jørgensen S, Vorgias CE & Antranikian G (1997) Cloning, sequencing, characterization, and expression of an extracellular alpha-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J Biol Chem 272, 1633516342.
  • 85
    Koch R, Spreinat K, Lemke K & Antranikian G (1991) Purification and properties of a hyperthermoactive α-amylase from the archaeobaterium Pyrococcus woesei. Arch Microbiol 155, 572578.
  • 86
    Bragger JM, Daniel RM, Coolbear T & Morgan HW (1989) Very stable enzymes from extremely thermophilic archaeabacteria and eubacteria. Appl Microbiol Biotechnol 31, 556561.
  • 87
    Kim JW, Flowers LO, Whiteley M & Peeples TL (2001) Biochemical confirmation and characterization of the family-57-like alpha-amylase of Methanococcus jannaschii. Folia Microbiol 46, 467473.
  • 88
    Rüdiger A, Jørgensen PL & Antranikian G (1995) Isolation and characterization of a heat stable pullulanase from the hyperthermophilic archeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl Environ Microbiol 61, 567575.
  • 89
    Andrade CMMC, Aguiar WB & Antranikian G (2001) Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi. Appl Biochem Biotechnol 91, 655669.
  • 90
    Niehaus F, Peters A, Groudieva T & Antranikian G (2000) Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon Thermococcus aggregans. FEMS Microbiol Lett 190, 223239.
  • 91
    Hansen T, Urbanke C & Schönheit P (2004) Bifunctional phopshoglucose/phosphomannose isomerase from the hyperthermophilic archaeon Pyrobaculum aerophilum. Extremophiles 8, 507512.
  • 92
    Brown SH, Sjoholm C & Kelly RM (1993) Purification and characterization of a highly thermostable glucose-isomerase produced by the extremely thermophilic eubacterium, Thermotoga-maritima. Biotechnol Bioeng 41, 878886.
  • 93
    Bauer MW, Bylina EJ, Swanson RV & Kelly RM (1997) Comparison of a β-glucosidase and a β-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 271, 2374923755.
  • 94
    Galichet A & Belarbi A (1999) Cloning of an α-glucosidase gene from Thermococcus hydrothermalis by functional complementation of a Saccharomyces cerevisiae mal11 mutant strain. EJB Lett 458, 188192.
  • 95
    Léveque E, Janecek S & Belarbi HB (2000) Thermophilic archaeal amylolytic enzymes. Enz Microbiol Technol 26, 314.
  • 96
    Rolfsmeier M, Haseltine C, Bini E, Clark A & Blum P (1998) Molecular characterization of the α-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 180, 12871295.
  • 97
    Brown SH & Kelly RM (1993) Characterization of amylolytic enzymes, having both α-1,4 and α-1,6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol 59, 26142621.
  • 98
    Kengen SWM, Luesink EJ, Stams AJM & Zehnder AJB (1993) Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213, 305312.
  • 99
    Matsui I, Sakai Y, Matsui E, Kikuchi H, Kawarabayasi Y & Honda K (2000) Novel substrate specificity of a membrane-bound beta-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. EJB Lett 467, 195200.
  • 100
    Duffaud GD, McCutchen CM, Leduc P, Parker KN & Kelly RM (1997) Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl Environ Microbiol 63, 169177.
  • 101
    Machielsen R & van der Oost J (2006) Production and characterization of a thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon. Pyrococcus Furiosus EJB J 273, 27222729.
  • 102
    Machielsen R, Uria AR, Kengen SWM & van der Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl Environ Microbiol 72, 233238.
  • 103
    Cheng TC, Ramakrishnan V & Chan SI (1999) Purification and characterization of cobalt-activated carboxypeptidase from the hyperthermophilic Archaeon Pyrococcus furiosus. Protein Sci 8, 24742486.
  • 104
    Mori K & Ishikawa K (2005) New deblocking aminopeptidases from Pyrococcus horikoshii. Biosci Biotech Bioch 69, 18541860.
  • 105
    Lee HS, Kim YJ, Bae SS, Jeon JH, Lim JK, Jeong BC, Kang SG & Lee JH (2006) Cloning, expression, and characterization of aminopeptidase P from the hyperthermophilic archaeon Thermococcus sp strain NA1. Appl Environ Microbiol 72, 18861890.
  • 106
    Story SV, Shah C, Jenney FE & Adams MWW (2005) Characterization of a novel zinc-containing, lysine-specific aminopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 187, 20772083.
  • 107
    Badr HR, Sims KA & Adams MWW (1994) Purification and characterization of a sucrose α-glucohydrolase (invertase) from the hyperthermophilic archaeon Pyrococus furiosus. System Appl Microbiol 17, 16.
  • 108
    Kengen SWM, Tuininga JE, de Bok FAM, Stams AJM & de Vos WM (1995) Purification and characterization of a novel ADP-dependent glucokinase from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 270, 3045330457.
  • 109
    Cowan DA, Smolenski KA, Daniel RM & Morgan HW (1987) An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88oC. Biochem J 247, 121133.
  • 110
    Morikawa M, Izawa Y, Rashid N, Hoaki T & Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60, 45594566.
  • 111
    Halio SB, Bauer MW, Mukund S, Adams MWW & Kelly RM (1997) Purification and characterization of two functional forms of intracellular protease PfpI from the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 63, 289295.
  • 112
    Gueguen Y, Voorhorst WGB, van der Oost J & de Vos WM (1997) Molecular and biochemical characterization of an endo-b-1,3-glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 272, 3125831264.
  • 113
    Johnsen U, Hansen T & Schonheit P (2003) Comparative analysis of pyruvate kinases from the hyperthermophilic archaea Archaeoglobus fulgidus, Aeropyrum pernix, and Pyrobaculum aerophilum and the hyperthermophilic bacterium Thermotoga maritima− unusual regulatory properties in hyperthermophilic archaea. J Biol Chem 278, 2541725427.
  • 114
    Cacciapuoti G, Bertoldo C, Brio A, Zappia V & Porcelli M (2003) Purification and characterization of 5′-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus− substrate specificity and primary structure. Extremophiles 7, 159168.
  • 115
    Cacciapuoti G, Porcelli M, Bertoldo C, Derosa M & Zappia V (1994) Purification and characterization of extremely thermophilic and thermostable 5′-methylthioadenosine phosphorylase from the archaeon Sulfolobus-solfataricus− purine nucleoside phosphorylase-activity and evidence for intersubunit disulfide bonds. J Biol Chem 269, 2476224769.
  • 116
    Imanaka H, Fukui T, Atomi H & Imanaka T (2002) Gene cloning and characterization of fructose-1,6-bisphosphate aldolase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biosci Bioeng 94, 237243.
  • 117
    Buchanan CL, Connaris H, Danson MJ, Reeve CD & Hough DW (1999) An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. Biochem J 343, 563570.
  • 118
    Hansen T, Reichstein B, Schmid R & Schonheit P (2002) The first archaeal ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. J Bacteriol 184, 59555965.
  • 119
    Koga S, Yoshioka I, Sakuraba H, Takahashi M, Sakasegawa S, Shimizu S & Ohshima T (2000) Biochemical characterization, cloning, and sequencing of ADP-dependent (AMP-forming) glucokinase from two hyperthermophilic archaea, Pyrococcus furiosus and Thermococcus litoralis. J Biochem 128, 10791085.
  • 120
    Tachibana Y, Kuramura A, Shirasaka N, Suzuki Y, Yamamoto T, Fujiwara S, Takagi M & Imanaka T (1999) Purification and characterization of an extremely thermostable cyclomaltodextrin glucanotransferase from a newly isolated hyperthermophilic archaeon, a Thermococcus sp. Appl Environ Microbiol 65, 19911997.
  • 121
    Tachibana Y, Fujiwara S, Takagi M & Imanaka T (1997) Cloning and expression of the 4-alpha-glucanotransferase gene from the hyperthermophilic archaeon Pyrococcus sp KOD1, and characterization of the enzyme. J Ferment Bioeng 83, 540548.
  • 122
    Ikeda M & Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 57, 624629.
  • 123
    Sako Y, Croocker PC & Ishida Y (1997) An extremely heat-stable extracellular proteinase (aeropyrolysin) from the hyperthermophilic archaeon Aeropyrum pernix K1. EJB Lett 415, 329334.
  • 124
    Story SV, Grunden AM & Adams MWW (2001) Characterization of an aminoacylase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183, 42594268.