SEARCH

SEARCH BY CITATION

References

  • 1
    Mikhailova VV, Kurganov BI, Pivovarova AV & Levitsky DI (2006) Dissociative mechanism of F-actin thermal denaturation. Biochemistry (Moscow) 71, 12611269.
  • 2
    Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Effects of small heat shock proteins on the thermal denaturation and aggregation of F-actin. Biochem Biophys Res Commun 331, 15481553.
  • 3
    Haslbeck M (2002) sHsps and their role in the chaperone network. Cell Mol Life Sci 59, 16491657.
  • 4
    Gusev NB, Bogatcheva NV & Marston SB (2002) Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Moscow) 67, 511519.
  • 5
    Haslbeck M, Franzmann T, Weinfurtner D & Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12, 842846.
  • 6
    Van Monfort RL, Bashs E, Friedrich KL, Slingsby C & Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8, 10251030.
  • 7
    Kim KK, Kim R & Kim SH (1998) Crystal structure of a small heat shock protein. Nature 394, 595599.
  • 8
    Jakob U, Gaestel M, Engel K & Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268, 15171520.
  • 9
    Ganea E (2001) Chaperone-like activity of α-crystallin and other small heat shock proteins. Curr Prot Pept Sci 2, 205225.
  • 10
    Shashidharamurthy R, Koteiche HA, Dong J & Mchaourab HS (2005) Mechanism of chaperone function in small heat shock proteins. Dissociation of the Hsp27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem 280, 52815289.
  • 11
    Lelj-Garolla B & Mauk AG (2006) Self association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 281, 81698174.
  • 12
    Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J et al. (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor α by phosphorylation. J Biol Chem 274, 1894718956.
  • 13
    Lutsch G, Vetter R, Offhauss U, Wieske M, Grone H-J, Klemenz R, Shimke I, Stahl J & Benndorf R (1997) Abundance and location of the small heat shock proteins HSP25 and alpha B-crystallin in rat and human heart. Circulation 96, 34663476.
  • 14
    Frank E, Madsen O, van Rheele T, Ricard G, Huyden MA & de Jong WW (2004) Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol 59, 792805.
  • 15
    Mounier N & Arrigo A-P (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7, 167176.
  • 16
    Miron T, Vancompernolle K, Vandekerckhove J, Wilckhek M & Geiger B (1991) A 25-kDa inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 114, 255261.
  • 17
    Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J & Lutsch G (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269, 2078020784.
  • 18
    Butt E, Immler D, Meyer HE, Kotlyarov A, Laass K & Gaestel M (2001) Heat shock protein 27 is a substrate of cGMP-dependent protein kinase in intact human platelet. J Biol Chem 276, 71087113.
  • 19
    During RL, Gibson BG, Li W, Bishai EA, Sidhu GS, Landry J & Southwick FS (2007) Anthrax lethal toxin paralyzes actin-based motility by blocking Hsp27 phosphorylation. EMBO J 26, 22402250.
  • 20
    Bukach OV, Marston SB & Gusev NB (2005) Small heat shock protein with apparent molecular mass 20 kDa (Hsp20, HspB6) is not a genuine actin-binding protein. J Muscle Res Cell Motil 26, 175191.
  • 21
    Panasenko OO, Kim MV, Marston SB & Gusev NB (2003) Interaction of the small heat shock protein with molecular mass 25 kDa (hsp25) with actin. Eur J Biochem 270, 892901.
  • 22
    Brophy CM, Lamb S & Graham A (1999) The small heat shock-related protein-20 is an actin-associated protein. J Vasc Surg 29, 326333.
  • 23
    Huot J, Houle F, Spitz DR & Landry J (1996) Hsp27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56, 273279.
  • 24
    Lavoie JN, Lambert H, Hickey E, Weber LA & Landry J (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15, 505516.
  • 25
    Bryantsev AL, Loktionova SA, Ilyinskaya OP, Tararak EM, Kampinga HH & Kabakov AE (2002) Distribution, phosphorylation, and activities of Hsp25 in heat-stressed H9c2 myoblasts: a functional link to cytoprotection. Cell Stress Chaperones 7, 146155.
  • 26
    Van Why SK, Mann AS, Ardito T, Thulin G, Ferris S, Macleod MA, Kashgarian M & Seigel NJ (2003) Hsp27 associates with actin and limits injury in energy depleted renal epithelia. J Am Soc Nephrol 14, 98106.
  • 27
    Koh TJ & Escobedo J (2003) Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contraction. Am J Physiol Cell Physiol 286, C713C722.
  • 28
    Singh BN, Rao KS, RamakrishnaT, Rangaraj N & Rao CM (2007) Association of αB-crystallin, a small heat shock protein, with actin: role in modulating actin filament dynamics in vivo. J Mol Biol 366, 756767.
  • 29
    Wang K & Spector A (1996) α-Crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur J Biochem 242, 5666.
  • 30
    Lelj-Garolla B & Mauk AG (2005) Self association of a small heat shock protein. J Mol Biol 345, 631642.
  • 31
    Chernik IS, Panasenko OO, Li Y, Marston SB & Gusev NB (2004) pH-induced changes of the structure of small heat shock proteins with molecular mass 24/27 kDa (HspB1). Biochem Biophys Res Commun 324, 11991203.
  • 32
    Khanova HA, Markossian KA, Kurganov BI, Samoilov AM, Kleimenov SYu, Levitsky DI, Yudin IK, Timofeeva AC, Muranov KO & Ostrovsky MA (2005) Mechanism of chaperone-like activity. Suppression of thermal aggregation of βL-crystallin by α-crystallin. Biochemistry 44, 1548015487.
  • 33
    Khanova HA, Markossian KA, Kleimenov SYu, Levitsky DI, Chebotareva NA, Golub NV, Asryants RA, Muronetz VI, Saso L, Yudin IK et al. (2007) Effect of α-crystallin on thermal denaturation and aggregation of rabbit muscle glyceraldehydes-3-phosphate dehydrogenase. Biophys Chem 125, 521531.
  • 34
    Markossian KA, Khanova HA, Kleimenov SYu, Levitsky DI, Chebotareva NA, Asryants RA, Muronetz VI, Saso L, Yudin IK & Kurganov BI (2006) Mechanism of thermal aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 45, 1337513384.
  • 35
    Meremyanin AV, Eronina TB, Chebotareva NA, Kleimenov SYu, Yudin IK, Muranov KO, Ostrovsky MA & Kurganov BI (2007) Effect of α-crystallin on thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscle. Biochemistry (Moscow) 72, 518528.
  • 36
    Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8, E564E571.
  • 37
    Stromer T, Ehrnsperger M, Gaestel M & Buchner J (2003) Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 278, 1801518021.
  • 38
    Pivovarova AV, Mikhailova VV, Chernik IS, Gusev NB & Levitsky DI (2005) Small heat-shock proteins prevent thermally induced aggregation of actin filaments by formation of soluble complexes with denatured actin. FEBS J 272 (Suppl. 1), 356.
  • 39
    Chebotareva NA, Meremyanin AV, Makeeva VF & Kurganov BI (2006) Self association of phosphorylase kinase under molecular crowding conditions. Progr Colloid Polym Sci 131, 8392.
  • 40
    Markossian K, Kurganov B, Levitsky D, Khanova H, Chebotareva N, Samoilov A, Eronina T, Fedurkina N, Mitskevich L, Merem'yanin A et al. (2006) Mechanisms of chaperone-like activity. In Protein Folding: New Research (Obalinsky TR, ed.), pp. 89171. Nova Science Publishers Inc., New York.
  • 41
    Creighton TE (1993) Proteins. Structures and Molecular Properties. W. H. Freeman & Co., New York.
  • 42
    Ehrnsperger M, Graber S, Gaestel M & Buchner J (1997) Binding of non-native proteins to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16, 221229.
  • 43
    Veinger L, Diamant S, Buchner J & Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273, 1103211037.
  • 44
    Spudich JA & Watt S (1971) The regulation of rabbit skeletal muscle contraction. Biochemical studies of the interaction of the tropomyosin–troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 246, 48664871.
  • 45
    Bukach OV, Seit-Nebi AS, Marston SB & Gusev NB (2004) Some properties of human small heat shock protein Hsp20 (HspB6). Eur J Biochem 271, 291302.
  • 46
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • 47
    Schuck P (2000) Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78, 16061619.
  • 48
    Beown PH & Schuck P (2006) Macromolecular size-and-shape distribution by sedimentation velocity analytical ultracentrifugation. Biophys J 90, 46514661.