SEARCH

SEARCH BY CITATION

References

  • 1
    Andersen JN, Jansen PG, Echwald SM, Mortensen OH, Fukada T, Del Vecchio R, Tonks NK & Moller NP (2004) A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J 18, 830.
  • 2
    Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J & Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117, 699711.
  • 3
    Lohse DL, Denu JM, Santoro N & Dixon JE (1997) Roles of aspartic acid-181 and serine-222 in intermediate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1. Biochemistry 36, 45684575.
  • 4
    Zhang ZY & Dixon JE (1993) Active site labeling of the Yersinia protein tyrosine phosphatase: the determination of the pKa of the active site cysteine and the function of the conserved histidine 402. Biochemistry 32, 93409345.
  • 5
    Denu JM & Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 56335642.
  • 6
    Bokoch GM & Knaus UG (2003) NADPH oxidases: not just for leukocytes anymore! Trends Biochem Sci 28, 502508.
  • 7
    Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4, 181189.
  • 8
    Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, Lambeth JD & Goldstein BJ (2004) The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24, 18441854.
  • 9
    Park HS, Jung HY, Park EY, Kim J, Lee WJ & Bae YS (2004) Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 173, 35893593.
  • 10
    Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15, 247254.
  • 11
    Rhee SG, Bae YS, Lee SR & Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000, PE1.
  • 12
    Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK & Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769773.
  • 13
    Salmeen A & Barford D (2005) Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7, 560577.
  • 14
    van Montfort RL, Congreve M, Tisi D, Carr R & Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773777.
  • 15
    Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB & Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272, 217221.
  • 16
    Kamata H, Honda S, Maeda S, Chang L, Hirata H & Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649661.
  • 17
    Mahadev K, Zilbering A, Zhu L & Goldstein BJ (2001) Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem 276, 2193821942.
  • 18
    Meng TC, Buckley DA, Galic S, Tiganis T & Tonks NK (2004) Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 279, 3771637725.
  • 19
    Meng TC, Fukada T & Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9, 387399.
  • 20
    Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, Johnson CS, Trump DL et al. (2005) Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280, 1991119924.
  • 21
    Sundaresan M, Yu ZX, Ferrans VJ, Irani K & Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296299.
  • 22
    Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43, 332347.
  • 23
    Szatrowski TP & Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51, 794798.
  • 24
    Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R, Parthasarathy S, Petros JA & Lambeth JD (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci USA 98, 55505555.
  • 25
    Mitsushita J, Lambeth JD & Kamata T (2004) The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res 64, 35803585.
  • 26
    Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK & Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 7982.
  • 27
    Cross AR & Jones OT (1986) The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J 237, 111116.
  • 28
    Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 18821883.
  • 29
    Terada LS (2006) Specificity in reactive oxidant signaling: think globally, act locally. J Cell Biol 174, 615623.
  • 30
    Krieger-Brauer HI, Medda PK & Kather H (1997) Insulin-induced activation of NADPH-dependent H2O2 generation in human adipocyte plasma membranes is mediated by Galphai2. J Biol Chem 272, 1013510143.
  • 31
    Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R & Griffin JD (1999) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93, 29282935.
  • 32
    Brumell JH, Burkhardt AL, Bolen JB & Grinstein S (1996) Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J Biol Chem 271, 14551461.
  • 33
    Giannoni E, Buricchi F, Raugei G, Ramponi G & Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25, 63916403.
  • 34
    Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667670.
  • 35
    Barford D (2004) The role of cysteine residues as redox-sensitive regulatory switches. Curr Opin Struct Biol 14, 679686.
  • 36
    Hecht D & Zick Y (1992) Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun 188, 773779.
  • 37
    Sullivan SG, Chiu DT, Errasfa M, Wang JM, Qi JS & Stern A (1994) Effects of H2O2 on protein tyrosine phosphatase activity in HER14 cells. Free Radic Biol Med 16, 399403.
  • 38
    Lee SR, Kwon KS, Kim SR & Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273, 1536615372.
  • 39
    Kwon J, Qu CK, Maeng JS, Falahati R, Lee C & Williams MS (2005) Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76-ADAP. EMBO J 24, 23312341.
  • 40
    Meng TC & Tonks NK (2003) Analysis of the regulation of protein tyrosine phosphatases in vivo by reversible oxidation. Methods Enzymol 366, 304318.
  • 41
    Markova B, Gulati P, Herrlich PA & Bohmer FD (2005) Investigation of protein-tyrosine phosphatases by in-gel assays. Methods 35, 2227.
  • 42
    Groen A, Lemeer S, van der Wijk T, Overvoorde J, Heck AJ, Ostman A, Barford D, Slijper M & den Hertog J (2005) Differential oxidation of protein-tyrosine phosphatases. J Biol Chem 280, 1029810304.
  • 43
    Nimnual AS, Taylor LJ & Bar-Sagi D (2003) Redox-dependent downregulation of Rho by Rac. Nat Cell Biol 5, 236241.
  • 44
    Cheng G & Lambeth JD (2004) NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem 279, 47374742.
  • 45
    Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC & Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18, 6982.
  • 46
    Chance B, Sies H & Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59, 527605.
  • 47
    Lambeth JD (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 9, 1117.
  • 48
    Hool LC (2006) Reactive oxygen species in cardiac signalling: from mitochondria to plasma membrane ion channels. Clin Exp Pharmacol Physiol 33, 146151.
  • 49
    Werner E & Werb Z (2002) Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158, 357368.
  • 50
    Persson C, Sjoblom T, Groen A, Kappert K, Engstrom U, Hellman U, Heldin CH, den Hertog J & Ostman A (2004) Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci USA 101, 18861891.
  • 51
    van der Wijk T, Blanchetot C, Overvoorde J & den Hertog J (2003) Redox-regulated rotational coupling of receptor protein-tyrosine phosphatase alpha dimers. J Biol Chem 278, 1396813974.
  • 52
    Burridge K & Nelson A (1995) An in-gel assay for protein tyrosine phosphatase activity: detection of widespread distribution in cells and tissues. Anal Biochem 232, 5664.
  • 53
    Huang ZZ, Chen C, Zeng Z, Yang H, Oh J, Chen L & Lu SC (2001) Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J 15, 1921.
  • 54
    Herrlich P & Bohmer FD (2000) Redox regulation of signal transduction in mammalian cells. Biochem Pharmacol 59, 3541.
  • 55
    Barford D, Keller JC, Flint AJ & Tonks NK (1994) Purification and crystallization of the catalytic domain of human protein tyrosine phosphatase 1B expressed in Escherichia coli. J Mol Biol 239, 726730.
  • 56
    Meng TC, Hsu SF & Tonks NK (2005) Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo. Methods 35, 2836.
  • 57
    Lee CL, Hsiao HH, Lin CW, Wu SP, Huang SY, Wu CY, Wang AH & Khoo KH (2003) Strategic shotgun proteomics approach for efficient construction of an expression map of targeted protein families in hepatoma cell lines. Proteomics 3, 24722486.