SEARCH

SEARCH BY CITATION

References

  • 1
    Bush K, Jacoby GA & Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39, 12111233.
  • 2
    Pierrard A, Ledent P, Docquier JD, Feller G, Gerday C & Frere JM (1998) Inducible class C β-lactamases produced by psychrophilic bacteria. FEMS Microbiol Lett 161, 311315.
  • 3
    Levy M & Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci USA 95, 79337938.
  • 4
    Kumar S, Tsai CJ & Nussinov R (2002) Maximal stabilities of reversible two-state proteins. Biochemistry 41, 53595374.
  • 5
    Demirjian DC, Moris-Varas F & Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5, 144151.
  • 6
    Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S & Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18, 189202.
  • 7
    Herbert RA (1992) A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 10, 395402.
  • 8
    Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G & Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28, 2542.
  • 9
    D’Amico S, Collins T, Marx J-C, Feller G & Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7, 385389.
  • 10
    Johns GC & Somero GN (2004) Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Mol Biol Evol 21, 314320.
  • 11
    Lonhienne T, Gerday C & Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543, 110.
  • 12
    Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60, 648662.
  • 13
    Feller G & Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1, 200208.
  • 14
    Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11, 211216.
  • 15
    Collins T, Meuwis MA, Gerday C & Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328, 419428.
  • 16
    D’Amico S, Marx JC, Gerday C & Feller G (2003) Activity–stability relationships in extremophilic enzymes. J Biol Chem 278, 78917896.
  • 17
    D’Amico S, Gerday C & Feller G (2003) Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted alphaamylase. J Mol Biol 332, 981988.
  • 18
    Leiros HKS, Willassen NP & Smalas AO (2000) Structural comparison of psychrophilic and mesophilic trypsins – elucidating the molecular basis of cold-adaptation. Eur J Biochem 267, 10391049.
  • 19
    Svingor A, Kardos J, Hajdu I, Nemeth A & Zavodszky P (2001) A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHs. J Biol Chem 276, 2812128125.
  • 20
    Kim S-Y, Hwang KY, Kim S-H, Sung H-C, Han YS & Cho Y (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274, 1176111767.
  • 21
    Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G & Van Beeumen J (2003) The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investgation of the active site. J Biol Chem 278, 75317539.
  • 22
    Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C & Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278, 3701537023.
  • 23
    Bae E & Phillips GN Jr (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279, 2820228208.
  • 24
    Coquelle N, Fioravanti E, Weik M, Vellieux F & Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374, 547562.
  • 25
    Fedy A-E, Yang N, Martinez A, Leiros H-KS & Steen IH (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium desulfotalae psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372, 130149.
  • 26
    Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4, 8390.
  • 27
    Collins T, D’Amico S, Marx J-C, Feller G & Gerday C (2007) Cold adapted enzymes. In Physiology and Biochemistry of Extremophiles (Gerday C & Glansdorff N, eds), pp. 165179. ASM Press, Washington, DC.
  • 28
    Feller G & Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53, 830841.
  • 29
    Matsumura N, Minami S & Mitsuhashi S (1998) Sequences of homologous beta-lactamases from clinical isolates of Serratia marcescens with different substrate specificities. Antimicrob Agents Chemother 42, 176179.
  • 30
    Beadle BM, McGovern SL, Patera A & Shoichet BK (1999) Functional analyses of AmpC beta-lactamase through differential stability. Protein Sci 8, 18161824.
  • 31
    Frère J-M (1995) Beta-lactamases and bacterial resistance to antibiotics. Mol Microbiol 16, 385395.
  • 32
    Joris B, Ledent P, Dideberg O, Fonze E, Lamotte-Brasseur J, Kelly JA, Ghuysen JM & Frere JM (1991) Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob Agents Chemother 35, 22942301.
  • 33
    D’Amico S, Sohier JS & Feller G (2006) Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase. J Mol Biol 358, 12961304.
  • 34
    Perl D, Mueller U, Heinemann U & Schmid FX (2000) Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Biol 7, 380383.
  • 35
    Siddiqui KS, Poljak A, Guilhaus M, De Francisci D, Curmi PM, Feller G, D’Amico S, Gerday C, Uversky VN & Cavicchioli R (2006) Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis. Proteins 64, 486501.
  • 36
    Mrabet NT, Van den Broeck A, Van den brande I, Stanssens P, Laroche Y, Lambeir AM, Matthijssens G, Jenkins J, Chiadmi M, van Tilbeurgh H et al. (1992) Arginine residues as stabilizing elements in proteins. Biochemistry 31, 22392253.
  • 37
    Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem (Tokyo) 88, 18951898.
  • 38
    Feller G, Zekhnini Z, Lamotte-Brasseur J & Gerday C (1997) Enzymes from cold-adapted microorganisms. The class C β-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244, 186191.
  • 39
    Leiros HK, Willassen NP & Smalas AO (1999) Residue determinants and sequence analysis of cold-adapted trypsins. Extremophiles 3, 205219.
  • 40
    Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, Gerday C, Haser R & Receveur-Brechot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348, 12111224.
  • 41
    Gianese G, Bossa F & Pascarella S (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47, 236249.
  • 42
    Joris B, De Meester F, Galleni M, Reckinger G, Coyette J & Frère J-M (1985) The β-lactamase of Enterobacter cloacae P99. Chemical properties, N-terminal sequence and interaction with 6β-halogenopenicillanates. Biochem J 228, 241248.
  • 43
    Galleni M, Amicosante G & Frère J-M (1988) A survey of the kinetic parameters of class C β-lactamases. Cephalosporins and other β-lactam compounds. Biochem J 255, 123129.
  • 44
    Vanhove M, Raquet X & Frere JM (1995) Investigation of the folding pathway of the TEM-1 beta-lactamase. Proteins 22, 110118.
  • 45
    Otwinowski Z & Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307326.
  • 46
    Navaza J (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr A 50, 157163.
  • 47
    Lobkovsky E, Moews PC, Liu H, Zhao H, Frere JM & Knox JR (1993) Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci USA 90, 1125711261.
  • 48
    Sheldrick GM (1997) SHELXS97 and SHELXL97. University of Göttingen, Göttingen.
  • 49
    McRee DE (1999) XtalView 4.0. Scripps Research Institute, La Jolla, CA.
  • 50
    Laskowski RA, MacArthur MW, Moss DS & Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26, 283291.
  • 51
    Lambert C, Leonard N, De Bolle X & Depiereux E (2002) ESyPred3D: prediction of protein 3D structures. Bioinformatics 18, 12501256.
  • 52
    Neshich G, Togawa RC, Mancini AL, Kuser PR, Yamagishi ME, Pappas G Jr, Torres WV, Fonseca e Campos T, Ferreira LL, Luna FM et al. (2003) STING Millennium: a web-based suite of programs for comprehensive and simultaneous analysis of protein structure and sequence. Nucleic Acids Res 31, 33863392.
  • 53
    Hubbard SJ & Thornton JM (1993) NACCESS. Department of Biochemistry and Molecular Biology, University College London, London.
  • 54
    Galleni M & Frère J-M (1988) A survey of the kinetic parameters of class C β-lactamases. Penicillins. Biochem J 255, 119122.