SEARCH

SEARCH BY CITATION

References

  • 1
    Phillips DR, Rasbery JM, Bartel B & Matsuda SP (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9, 305314.
  • 2
    Fujioka S & Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54, 137164.
  • 3
    Haralampidis K, Trojanowska M & Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng Biotechnol 75, 3149.
  • 4
    Xu R, Fazio GC & Matsuda SP (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry 65, 261291.
  • 5
    Suzuki H, Achnine L, Xu R, Matsuda SP & Dixon RA (2002) A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32, 10331048.
  • 6
    Connolly JD & Hill RA (2007) Triterpenoids. Nat Prod Rep 24, 465486.
  • 7
    Vincken JP, Heng L, de Groot A & Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68, 275297.
  • 8
    Wallace RJ (2004) Antimicrobial properties of plant secondary metabolites. Proc Nutr Soc 63, 621629.
  • 9
    Taylor WG, Fields PG & Sutherland DH (2004) Insecticidal components from field pea extracts: soyasaponins and lysolecithins. J Agric Food Chem 52, 74847490.
  • 10
    Carr TP & Jesch ED (2006) Food components that reduce cholesterol absorption. Adv Food Nutr Res 51, 165204.
  • 11
    Wina E, Muetzel S & Becker K (2005) The impact of saponins or saponin-containing plant materials on ruminant production – a review. J Agric Food Chem 53, 80938105.
  • 12
    Kerwin SM (2004) Soy saponins and the anticancer effects of soybeans and soy-based foods. Curr Med Chem Anticancer Agents 4, 263272.
  • 13
    Ma YX, Fu HZ, Li M, Sun W, Xu B & Cui JR (2007) An anticancer effect of a new saponin component from Gymnocladus chinensis Baillon through inactivation of nuclear factor-kappaB. Anticancer Drugs 18, 4146.
  • 14
    Skene CD & Sutton P (2006) Saponin-adjuvanted particulate vaccines for clinical use. Methods 40, 5359.
  • 15
    Maury J, Asadollahi MA, Moller K, Clark A & Nielsen J (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100, 1951.
  • 16
    Reiling KK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J & Keasling JD (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87, 200212.
  • 17
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940943.
  • 18
    Martin VJ, Pitera DJ, Withers ST, Newman JD & Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21, 796802.
  • 19
    van Agtmael MA, Eggelte TA & van Boxtel CJ (1999) Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci 20, 199205.
  • 20
    Zhang H, Shibuya M, Yokota S & Ebizuka Y (2003) Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Biol Pharm Bull 26, 642650.
  • 21
    Gardner RG & Hampton RY (1999) A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J Biol Chem 274, 3167131678.
  • 22
    Hampton RY & Rine J (1994) Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol 125, 299312.
  • 23
    Donald KA, Hampton RY & Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 63, 33413344.
  • 24
    Polakowski T, Stahl U & Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 49, 6671.
  • 25
    Veen M, Stahl U & Lang C (2003) Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res 4, 8795.
  • 26
    M’Baya B, Fegueur M, Servouse M & Karst F (1989) Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae. Lipids 24, 10201023.
  • 27
    Polakowski T, Bastl R, Stahl U & Lang C (1999) Enhanced sterol-acyl transferase activity promotes sterol accumulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53, 3035.
  • 28
    Yun DF, Laz TM, Clements JM & Sherman F (1996) mRNA sequences influencing translation and the selection of AUG initiator codons in the yeast Saccharomyces cerevisiae. Mol Microbiol 19, 12251239.
  • 29
    Gietz RD & Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2, 3537.