• 1
    Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4, 181189.
  • 2
    Nauseef WM (2004) Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122, 277291.
  • 3
    Quinn MT & Gauss KA (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 76, 760781.
  • 4
    Cross AR & Segal AW (2004) The NADPH oxidase of professional phagocytes – prototype of the NOX electron transport chain systems. Biochim Biophys Acta 1657, 122.
  • 5
    Geiszt M & Leto TL (2004) The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 279, 5171551718.
  • 6
    Sumimoto H, Miyano K & Takeya R (2005) Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun 338, 677686.
  • 7
    Groemping Y & Rittinger K (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386, 401416.
  • 8
    Dagher MC & Pick E (2007) Opening the black box: lessons from cell-free systems on the phagocyte NADPH-oxidase. Biochimie 89, 11231132.
  • 9
    Bedard K & Krause K-H (2007) The NOX family of ROS-generating NADPH oxidase: physiology and pathophysiology. Physiol Rev 87, 245313.
  • 10
    Lambeth JD, Kawahara T & Diebold B (2007) Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 43, 319331.
  • 11
    Roos D, de Boer M, Kuribayashi F, Meischl C, Weening RS, Segal AW, Ahlin A, Nemet K, Hossle JP, Bernatowska-Matuszkiewicz E et al. (1996) Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood 87, 16631681.
  • 12
    Heyworth PG, Cross AR & Curnutte JT (2003) Chronic granulomatous disease. Curr Opin Immunol 15, 578584.
  • 13
    Overmyer K, Broschí M & Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8, 335342.
  • 14
    Torres MA & Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8, 397403.
  • 15
    Sagi M & Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141, 336340.
  • 16
    Segal AW, West I, Wientjes F, Nugent JH, Chavan AJ, Haley B, Garcia RC, Rosen H & Scrace G (1992) Cytochrome b–245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284, 781788.
  • 17
    Sumimoto H, Sakamoto N, Nozaki M, Sakaki Y, Takeshige K & Minakami S (1992) Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochem Biophys Res Commun 186, 13681375.
  • 18
    Finegold AA, Shatwell KP, Segal AW, Klausner RD & Dancis A (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271, 3102131024.
  • 19
    Shatwell KP, Dancis A, Cross AR, Klausner RD & Segal AW (1996) The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271, 1424014244.
  • 20
    Georgatsou E, Mavrogiannis LA, Fragiadakis GS & Alexandraki D (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272, 1378613792.
  • 21
    Cross AR, Rae J & Curnutte JT (1995) Cytochrome b–245 of the neutrophil superoxide-generating system contains two nonidentical hemes. J Biol Chem 270, 1707517077.
  • 22
    Saraste M (1984) Location of haem-binding sites in the mitochondrial cytochrome b. FEBS Lett 166, 367372.
  • 23
    Widger WR, Cramer WA, Herrmann RG & Trebst A (1984) Sequence homology and structural similarity between cytochrome b of mitochondrial complex III and the chloroplast b6f complex: position of the cytochrome b hemes in the membrane. Proc Natl Acad Sci USA 81, 674678.
  • 24
    Robertson DE, Farid RS, Moser CC, Urbauer JL, Mulholland SE, Pidikiti R, Lear JD, Wand AJ, DeGrado WF & Dutton PL (1994) Design and synthesis of multi-haem proteins. Nature 368, 425432.
  • 25
    Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L & Deisenhofer J (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 6066.
  • 26
    Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S & Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 6471.
  • 27
    Kurisu G, Zhang H, Smith JL & Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302, 10091014.
  • 28
    Stroebel D, Choquet Y, Popot JL & Picot D (2003) An atypical haem in the cytochrome b6f complex. Nature 426, 413418.
  • 29
    Smith JL, Zhang H, Yan J, Kurisu G & Cramer WA (2004) Cytochrome bc complexes: a common core of structure and function surrounded by diversity in the outlying provinces. Curr Opin Struct Biol 14, 432439.
  • 30
    Cramer WA & Zhang H (2006) Consequences of the structure of the cytochrome b6f complex for its charge transfer pathways. Biochim Biophys Acta 1757, 339345.
  • 31
    Cramer WA, Zhang H, Yan J, Kurisu G & Smith JL (2006) Transmembrane traffic in the cytochrome b6f complex. Annu Rev Biochem 75, 769790.
  • 32
    Biberstine-Kinkade KJ, DeLeo FR, Epstein RI, LeRoy BA, Nauseef WM & Dinauer MC (2001) Heme-ligating histidines in flavocytochrome b558: identification of specific histidines in gp91phox. J Biol Chem 276, 3110531112.
  • 33
    Isogai Y, Iizuka T & Shiro Y (1995) The mechanism of electron donation to molecular oxygen by phagocytic cytochrome b558. J Biol Chem 270, 78537857.
  • 34
    Fujii H, Johnson MK, Finnegan MG, Miki T, Yoshida LS & Kakinuma K (1995) Electron spin resonance studies on neutrophil cytochrome b558. Evidence that low-spin heme iron is essential for O2– generating activity. J Biol Chem 270, 1268512689.
  • 35
    Rotrosen D, Yeung CL, Leto TL, Malech HL & Kwong CH (1992) Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256, 14591462.
  • 36
    Sugawara M, Sugawara Y, Wen K & Giulivi C (2002) Generation of oxygen free radicals in thyroid cells and inhibition of thyroid peroxidase. Exp Biol Med. 227, 141146.
  • 37
    Ameziane-El-Hassani R, Morand S, Boucher J-L, Frapart Y-M, Apostolou D, Agnandji D, Gnidehou S, Ohayon R, Noël-Hudson M-S, Francon J et al. (2005) Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem 280, 3004630054.
  • 38
    Robinson NJ, Procter CM, Connolly EL & Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397, 694697.
  • 39
    Waters BM, Blevins DG & Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129, 8594.
  • 40
    Schagerlof U, Wilson G, Hebert H, Al-Karadaghi S & Hagerhall C (2006) Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana. Plant Mol Biol 62, 215221.
  • 41
    Karplus PA, Daniels MJ & Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251, 6066.
  • 42
    Carrillo N & Ceccarelli EA (2003) Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem 270, 19001915.
  • 43
    Wang M, Roberts DL, Paschke R, Shea TM, Masters BS & Kim JJ (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci USA 94, 84118416.
  • 44
    Murataliev MB, Feyereisen R & Walker FA (2004) Electron transfer by diflavin reductases. Biochim Biophys Acta 1698, 126.
  • 45
    Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS et al. (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci USA 95, 30593064.
  • 46
    Paine MJ, Garner AP, Powell D, Sibbald J, Sales M, Pratt N, Smith T, Tew DG & Wolf CR (2000) Cloning and characterization of a novel human dual flavin reductase. J Biol Chem 275, 14711478.
  • 47
    Olteanu H & Banerjee R (2003) Redundancy in the pathway for redox regulation of mammalian methionine synthase: reductive activation by the dual flavoprotein, novel reductase 1. J Biol Chem 278, 3831038314.
  • 48
    Iyanagi T (2005) Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain. Biochem Biophys Res Commun 338, 520528.
  • 49
    Alderton WK, Cooper CE & Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357, 593615.
  • 50
    Baldauf SL (2003) The deep roots of eukaryotes. Science 300, 17031706.
  • 51
    Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ & Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20, 670676.
  • 52
    Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ & Katz LA (2006) Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2, doi: DOI: 10.1371/journal.pgen.0020220.
  • 53
    Arisue N, Hasegawa M & Hashimoto T (2005) Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data. Mol Biol Evol 22, 409420.
  • 54
    Embley TM & Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440, 623630.
  • 55
    Lardy B, Bof M, Aubry L, Paclet MH, Morel F, Satre M & Klein G (2005) NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochim Biophys Acta 1744, 199212.
  • 56
    Lalucque H & Silar P (2003) NADPH oxidase: an enzyme for multicellularity? Trends Microbiol 11, 912.
  • 57
    Takemoto D, Tanaka A & Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44, 10651076.
  • 58
    Hervé C, Tonon T, Collén J, Corre E & Boyen C (2006) NADPH oxidases in eukaryotes: red algae provide new hints!. Curr Genet 49, 190204.
  • 59
    Aguirre J, Ríos-Momberg M, Hewitt D & Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13, 111118.
  • 60
    Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vijlder JJ, Vulsma T & Ris-Stalpers C (2002) Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 347, 95102.
  • 61
    Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, Maenhaut C, Miot F, Van Sande J, Many MC et al. (2007) Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab 92, 37643773.
  • 62
    Wong JL, Creton R & Wessel GM (2004) The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell 7, 801814.
  • 63
    Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, Edens HA, Tang X, Sullards C, Flaherty DB et al. (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154, 879891.
  • 64
    Ha EM, Oh CT, Bae YS & Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847850.
  • 65
    Dupuy C, Virion A, De Sandro V, Ohayon R, Kaniewski J, Pommier J & Dème D (1992) Activation of the NADPH-dependent H2O2-generating system in pig thyroid particulate fraction by limited proteolysis and Zn2+ treatment. Biochem J 283, 591595.
  • 66
    Bánfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnár GZ, Krause K-H & Cox JA (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279, 1858318591.
  • 67
    Grasberger H, De Deken X, Miot F, Pohlenz J & Refetoff S (2007) Missense mutations of dual oxidase 2 (DUOX2) implicated in congenital hypothyroidism have impaired trafficking in cells reconstituted with DUOX2 maturation factor. Mol Endocrinol 21, 14081421.
  • 68
    Fortemaison N, Miot F, Dumont JE & Dremier S (2005) Regulation of H2O2 generation in thyroid cells does not involve Rac1 activation. Eur J Endocrinol 152, 127133.
  • 69
    Bánfi B, Molnár G, Maturana A, Steger K, Hegedus B, Demaurex N & Krause K-H (2001) A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276, 3759437601.
  • 70
    Ritsick DR, Edens WA, Finnerty V & Lambeth JD (2007) Nox regulation of smooth muscle contraction. Free Rad Biol Med 43, 3138.
  • 71
    Sagi M & Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126, 12811290.
  • 72
    Kurusu T, Yagala T, Miyao A, Hirochika H & Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42, 798809.
  • 73
    Jagnandan D, Church JE, Bánfi B, Stuehr DJ, Marrero MB & Fulton DJ (2007) Novel mechanism of activation of NADPH oxidase 5. Calcium sensitization via phosphorylation. J Biol Chem 282, 64946507.
  • 74
    Tirone F & Cox JA (2007) NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 581, 12021208.
  • 75
    Gapper C & Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141, 341345.
  • 76
    Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T et al. (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19, 40224034.
  • 77
    Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N & Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19, 10651680.
  • 78
    Nühse TS, Bottrill AR, Jones AM & Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51, 931940.
  • 79
    Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H & Shimamoto K (1999) The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci USA 96, 1092210926.
  • 80
    Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V & Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438, 10131016.
  • 81
    Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T & Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA 103, 230235.
  • 82
    Pawson T, Raina M & Nash P (2002) Interaction domains: from simple binding events to complex cellular behavior. FEBS Lett 513, 210.
  • 83
    Pawson T & Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300, 445452.
  • 84
    DeLeo FR, Burritt JB, Yu L, Jesaitis AJ, Dinauer MC & Nauseef WM (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275, 1398613993.
  • 85
    Grasberger H & Refetoff S (2006) Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 281, 1826918272.
  • 86
    Zamproni I, Grasberger H, Cortinovis F, Vigone MC, Chiumello G, Mora S, Onigata K, Fugazzola L, Refetoff S, Persani L et al. (2008) Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab 93, 605610.
  • 87
    Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R & Brandes RP (2004) Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279, 4593545941.
  • 88
    Ueno N, Takeya R, Miyano K, Kikuchi H & Sumimoto H (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem 280, 2332823339.
  • 89
    Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC & Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18, 6982.
  • 90
    Kawahara T, Ritsick D, Cheng G & Lambeth JD (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem 280, 3185931869.
  • 91
    Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R, Kuribayashi F, Imajoh-Ohmi S, Igarashi K, Shibata Y, Sueishi K et al. (2005) The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells 10, 11391151.
  • 92
    Nakano Y, Bánfi B, Jesaitis AJ, Dinauer MC, Allen LA & Nauseef WM (2007) Critical roles for p22phox in the structural maturation and subcellular targeting of Nox3. Biochem J 403, 97108.
  • 93
    Nakano Y, Longo-Guess CM, Bergstrom DE, Nauseef WM, Jones SM & Bánfi B (2008) Mutation of the Cyba gene encoding p22phox causes vestibular and immune defects in mice. J Clin Invest 118, 11761185.
  • 94
    Kawahara T & Lambeth JD (2007) Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes. BMC Evol Biol 7, 178, doi: DOI: 10.1186/1471-2148-7-178.
  • 95
    Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB et al. (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444, 8588.
  • 96
    Delsuc F, Brinkmann H, Chourrout D & Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965968.
  • 97
    Inoue Y, Ogasawara M, Moroi T, Satake M, Azumi K, Moritomo T & Nakanishi T (2005) Characteristics of NADPH oxidase genes (Nox2, p22, p47, and p67) and Nox4 gene expressed in blood cells of juvenile Ciona intestinalis. Immunogenetics 57, 520534.
  • 98
    Kawahara BT, Quinn MT & Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7, 109, doi: DOI: 10.1186/1471-2148-7-109.
  • 99
    Freeman JL & Lambeth JD (1996) NADPH oxidase activity is independent of p47phoxin vitro. J Biol Chem 271, 2257822582.
  • 100
    Koshkin V, Lotan O & Pick E (1996) The cytosolic component p47phox is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J Biol Chem 271, 3032630329.
  • 101
    Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling K & Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 7982.
  • 102
    Bánfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, Ligeti E, Demaurex N & Krause K-H (2000) A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287, 138142.
  • 103
    Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H et al. (2005) Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112, 26772685.
  • 104
    Dikalova A, Clempus R, Lassègue B, Cheng G, McCoy J, Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D et al. (2005) Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112, 26682676.
  • 105
    Gavazzi G, Bánfi B, Deffert C, Fiette L, Schappi M, Herrmann F & Krause K-H (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580, 497504.
  • 106
    Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H & Sumimoto H (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278, 2523425246.
  • 107
    Geiszt M, Lekstrom K, Witta J & Leto TL (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278, 2000620012.
  • 108
    Bánfi B, Clark RA, Steger K & Krause K-H (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278, 35103513.
  • 109
    Cheng G & Lambeth JD (2004) NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the phox homology (PX) domain. J Biol Chem 279, 47374742.
  • 110
    Ueyama T, Geiszt M & Leto TL (2006) Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26, 21602174.
  • 111
    Miyano K, Ueno N, Takeya R & Sumimoto H (2006) Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281, 2185721868.
  • 112
    Cheng G, Diebold BA, Hughes Y & Lambeth JD (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281, 1771817726.
  • 113
    Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J et al. (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18, 486491.
  • 114
    Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M & Krause K-H (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279, 4606546072.
  • 115
    Cheng G, Ritsick D & Lambeth JD (2004) Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem 279, 3425034255.
  • 116
    Miyano K & Sumimoto H (2007) Role of the small GTPase Rac in p22phox-dependent NADPH oxidases. Biochimie 89, 11331144.
  • 117
    Geiszt M, Kopp JB, Varnai P & Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97, 80108014.
  • 118
    Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, Hattori M, Sakaki Y & Sumimoto H (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276, 14171423.
  • 119
    Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H & Iida M (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109, 227233.
  • 120
    Serrander L, Cartier L, Bedard K, Bánfi B, Lardy B, Plastre O, Sienkiewicz A, Forro L, Schlegel W & Krause K-H (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406, 105114.
  • 121
    Gorin Y, Ricono JM, Kim NH, Bhandari B, Choudhury GG & Abboud HE (2003) Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am J Physiol Renal Physiol 285, F219F229.
  • 122
    Sumimoto H, Kage Y, Nunoi H, Sasaki H, Nose T, Fukumaki Y, Ohno M, Minakami S & Takeshige K (1994) Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci USA 91, 53455349.
  • 123
    Leto TL, Adams AG & de Mendez I (1994) Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci USA 91, 1065010654.
  • 124
    Leusen JH, Bolscher BG, Hilarius PM, Weening RS, Kaulfersch W, Seger RA, Roos D & Verhoeven AJ (1994) 156Pro[RIGHTWARDS ARROW]Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22phox) leads to defective translocation of the cytosolic proteins p47phox and p67phox. J Exp Med 180, 23292334.
  • 125
    Groemping Y, Lapouge K, Smerdon SJ & Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343355.
  • 126
    Ogura K, Nobuhisa I, Yuzawa S, Takeya R, Torikai S, Saikawa K, Sumimoto H & Inagaki F (2006) NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox-derived proline-rich peptide. J Biol Chem 281, 36603668.
  • 127
    Nobuhisa I, Takeya R, Ogura K, Ueno N, Kohda D, Inagaki F & Sumimoto H (2006) Activation of the superoxide-producing phagocyte NADPH oxidase requires co-operation between the tandem SH3 domains of p47phox in recognition of a polyproline type II helix and an adjacent α-helix of p22phox. Biochem J 396, 183192.
  • 128
    Lang BF, O’Kelly C, Nerad T, Gray MW & Burger G (2002) The closest unicellular relatives of animals. Curr Biol 12, 17731778.
  • 129
    King N (2004) The unicellular ancestry of animal development. Dev Cell 7, 313325.
  • 130
    Zhu Y, Marchal CC, Casbon A-J, Stull N, von Löhneysen K, Knaus UG, Jesaitis AJ, McCormick S, Nauseef WM & Dinauer MC (2006) Deletion mutagenesis of p22phox subunit: identification of regions critical for gp91phox maturation and NADPH oxidase activity. J Biol Chem 281, 3033630346.
  • 131
    Ago T, Nunoi H, Ito T & Sumimoto H (1999) Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47phox, thereby activating the oxidase. J Biol Chem 274, 3364433653.
  • 132
    Yuzawa S, Suzuki NN, Fujioka Y, Ogura K, Sumimoto H & Inagaki F (2004) A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes Cells 9, 443456.
  • 133
    Yuzawa S, Ogura K, Horiuchi M, Suzuki NN, Fujioka Y, Kataoka M, Sumimoto H & Inagaki F (2004) Solution structure of the tandem Src homology 3 domains of p47phox in an autoinhibited form. J Biol Chem 279, 2975229760.
  • 134
    El Benna J, Faust LP & Babior BM (1994) The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem 269, 2343123436.
  • 135
    Inanami O, Johnson JL, McAdara JK, El Benna J, Faust LR, Newburger PE & Babior BM (1998) Activation of the leukocyte NADPH oxidase by phorbol ester requires the phosphorylation of p47PHOX on serine 303 or 304. J Biol Chem 273, 95399543.
  • 136
    Shiose A & Sumimoto H (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem 275, 13793137801.
  • 137
    Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y et al. (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714719.
  • 138
    Wientjes FB, Hsuan JJ, Totty NF & Segal AW (1993) p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J 296, 557561.
  • 139
    Chenevert J (1994) Cell polarization directed by extracellular cues in yeast. Mol Biol Cell 5, 11691175.
  • 140
    Ponting CP (1996) Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein Sci 5, 23532357.
  • 141
    Sumimoto H, Ito T, Hata K, Mizuki K, Nakamura R, Kage Y, Sakaki Y, Nakamura M & Takeshige K (1997) Membrane translocation of cytosolic factors in activation of the phagocyte NADPH oxidase: role of protein–protein interaction. In Membrane Proteins: Structure, Function and Expression Control (Hamasaki N & Mihara K, eds), pp. 235245. Kyushu University Press, Fukuoka,/S. Karger AG, Basel.
  • 142
    Kanai F, Liu H, Field SJ, Akbary H, Matsuo T, Brown GE, Cantley LC & Yaffe MB (2001) The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 3, 675678.
  • 143
    Ago T, Takeya R, Hiroaki H, Kuribayashi F, Ito T, Kohda D & Sumimoto H (2001) The PX domain as a novel phosphoinositide-binding module. Biochem Biophys Res Commun 287, 733738.
  • 144
    Ago T, Kuribayashi F, Hiroaki H, Takeya R, Ito T, Kohda D & Sumimoto H (2003) Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci USA 100, 44744479.
  • 145
    Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho W & Williams RL (2002) Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21, 50575068.
  • 146
    Hiroaki H, Ago T, Ito T, Sumimoto H & Kohda D (2001) Solution structure of the PX domain, a target of the SH3 domain. Nat Struct Biol 8, 526530.
  • 147
    Mayumi M, Takeda Y, Hoshiko M, Serada K, Murata M, Moritomo T, Takizawa F, Kobayashi I, Araki K, Nakanishi T et al. (2008) Characterization of teleost phagocyte NADPH oxidase: molecular cloning and expression analysis of carp (Cyprinus carpio) phagocyte NADPH oxidase. Mol Immunol 45, 17201731.
  • 148
    Stahelin RV, Burian A, Bruzik KS, Murray D & Cho W (2003) Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox.. J Biol Chem 278, 1446914479.
  • 149
    Yamamoto A, Kami K, Takeya R & Sumimoto H (2007) Interaction between the SH3 domains and C-terminal proline-rich region in NADPH oxidase organizer 1 (Noxo1). Biochem Biophys Res Commun 352, 560565.
  • 150
    Takeya R, Taura M, Yamasaki T, Naito S & Sumimoto H (2006) Expression and function of Noxo1gamma, an alternative splicing form of the NADPH oxidase organizer 1. FEBS J 273, 36633677.
  • 151
    Ueyama T, Lekstrom K, Tsujibe S, Saito N & Leto TL (2007) Subcellular localization and function of alternatively spliced Noxo1 isoforms. Free Rad Biol Med 42, 180190.
  • 152
    Kiss PJ, Knisz J, Zhang Y, Baltrusaitis J, Sigmund CD, Thalmann R, Smith RJ, Verpy E & Bánfi B (2006) Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr Biol 16, 208213.
  • 153
    de Mendez I, Garrett MC, Adams AG & Leto TL (1994) Role of p67phox SH3 domains in assembly of the NADPH oxidase system. J Biol Chem 269, 1632616332.
  • 154
    Mizuki K, Kadomatsu K, Hata K, Ito T, Fan QW, Kage Y, Fukumaki Y, Sakaki Y, Takeshige K & Sumimoto H (1998) Functional modules and expression of mouse p40phox and p67phox, SH3-domain-containing proteins involved in the phagocyte NADPH oxidase complex. Eur J Biochem 251, 573582.
  • 155
    Finan P, Shimizu Y, Gout I, Hsuan J, Truong O, Butcher C, Bennett P, Waterfield MD & Kellie S (1994) An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem 269, 1375213755.
  • 156
    Leusen JH, Fluiter K, Hilarius PM, Roos D, Verhoeven AJ & Bolscher BG (1995) Interactions between the cytosolic components p47phox and p67phox of the human neutrophil NADPH oxidase that are not required for activation in the cell-free system. J Biol Chem 270, 1121611221.
  • 157
    Kami K, Takeya R, Sumimoto H & Kohda D (2002) Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p. EMBO J 21, 42684276.
  • 158
    Massenet C, Chenavas S, Cohen-Addad C, Dagher MC, Brandolin G, Pebay-Peyroula E & Fieschi F (2005) Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains. J Biol Chem 280, 1375213761.
  • 159
    Mizuki K, Takeya R, Kuribayashi F, Nobuhisa I, Kohda D, Nunoi H, Takeshige K & Sumimoto H (2005) A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Arch Biochem Biophys 444, 185194.
  • 160
    Abo A, Pick E, Hall A, Totty N, Teahan CG & Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353, 668670.
  • 161
    Knaus UG, Heyworth PG, Evans T, Curnutte JT & Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254, 15121515.
  • 162
    Mizuno T, Kaibuchi K, Ando S, Musha T, Hiraoka K, Takaishi K, Asada M, Nunoi H, Matsuda I & Takai Y (1992) Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J Biol Chem 267, 1021510218.
  • 163
    Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ et al. (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA 97, 46544659.
  • 164
    Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine JE, Petryniak B, Derrow CW, Harris C et al. (2000) Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96, 16461654.
  • 165
    Diekmann D, Abo A, Johnston C, Segal AW & Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265, 531533.
  • 166
    Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F & Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274, 2505125060.
  • 167
    D’Andrea LD & Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28, 655662.
  • 168
    Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ & Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 6, 899907.
  • 169
    Grizot S, Fieschi F, Dagher MC & Pebay-Peyroula E (2001) The active N-terminal region of p67phox. Structure at 1.8 Å resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem 276, 2162721631.
  • 170
    Takemoto D, Tanaka A & Scott B (2006) A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18, 28072821.
  • 171
    Hata K, Takeshige K & Sumimoto H (1997) Roles for proline-rich regions of p47phox and p67phox in the phagocyte NADPH oxidase activation in vitro. Biochem Biophys Res Commun 241, 226231.
  • 172
    Han C-H, Freeman JL, Lee T, Motalebi SA & Lambeth JD (1998) Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67phox. J Biol Chem 273, 1666316668.
  • 173
    Price MO, McPhail LC, Lambeth JD, Han CH, Knaus UG & Dinauer MC (2002) Creation of a genetic system for analysis of the phagocyte respiratory burst: high-level reconstitution of the NADPH oxidase in a nonhematopoietic system. Blood 99, 26532661.
  • 174
    Nisimoto Y, Motalebi S, Han CH & Lambeth JD (1999) The p67phox activation domain regulates electron flow from NADPH to flavin in flavocytochrome b558. J Biol Chem 274, 2299923005.
  • 175
    Gorzalczany Y, Alloul N, Sigal N, Weinbaum C & Pick E (2002) A prenylated p67phox–Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism. J Biol Chem 277, 1860518610.
  • 176
    Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher MC & Pick E (2004) Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox–Rac1 chimeras. J Biol Chem 279, 1600716016.
  • 177
    Mizrahi A, Berdichevsky Y, Ugolev Y, Molshanski-Mor S, Nakash Y, Dahan I, Alloul N, Gorzalczany Y, Sarfstein R, Hirshberg M et al. (2006) Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure–function relationships. J Leukoc Biol 79, 881895.
  • 178
    Diebold BA & Bokoch GM (2001) Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2, 211215.
  • 179
    Berdichevsky Y, Mizrahi A, Ugolev Y, Molshanski-Mor S & Pick E (2007) Tripartite chimeras comprising functional domains derived from the cytosolic NADPH oxidase components p47phox, p67phox, and Rac1 elicit activator-independent superoxide production by phagocyte membranes: an essential role for anionic membrane phospholipids. J Biol Chem 282, 2212222139.
  • 180
    Sumimoto H, Kamakura S & Ito T (2007) Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Sci STKE, doi: DOI: 10.1126/stke.4012007re6.
  • 181
    Kuribayashi F, Nunoi H, Wakamatsu K, Tsunawaki S, Sato K, Ito T & Sumimoto H (2002) The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J 21, 63126320.
  • 182
    Suh CI, Stull ND, Li XJ, Tian W, Price MO, Grinstein S, Yaffe MB, Atkinson S & Dinauer MC (2006) The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcγIIA receptor-induced phagocytosis. J Exp Med 203, 19151925.
  • 183
    Ellson CD, Davidson K, Ferguson GJ, O’Connor R, Stephens LR & Hawkins PT (2006) Neutrophils from p40phox–/– mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J Exp Med 203, 19271937.
  • 184
    Ito T, Matsui Y, Ago T, Ota K & Sumimoto H (2001) Novel modular domain PB1 recognizes PC motif to mediate functional protein–protein interactions. EMBO J 20, 39383946.
  • 185
    Terasawa H, Noda Y, Ito T, Hatanaka H, Ichikawa S, Ogura K, Sumimoto H & Inagaki F (2001) Structure and ligand recognition of the PB1 domain: a novel protein module binding to the PC motif. EMBO J 20, 39473956.
  • 186
    Yoshinaga S, Kohjima M, Ogura K, Yokochi M, Takeya R, Ito T, Sumimoto H & Inagaki F (2003) The PB1 domain and the PC motif-containing region are structurally similar protein binding modules. EMBO J 22, 48884897.
  • 187
    Wilson MI, Gill DJ, Perisic O, Quinn MT & Williams RL (2003) PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Mol Cell 12, 3950.
  • 188
    Noda Y, Kohjima M, Izaki T, Ota K, Yoshinaga S, Inagaki F, Ito T & Sumimoto H (2003) Molecular recognition in dimerization between PB1 domains. J Biol Chem 278, 4351643524.
  • 189
    Hirano Y, Yoshinaga S, Takeya R, Suzuki NN, Horiuchi M, Kohjima M, Sumimoto H & Inagaki F (2005) Structure of a cell polarity regulator, a complex between atypical PKC and Par6 PB1 domains. J Biol Chem 280, 96539661.
  • 190
    Nakamura R, Sumimoto H, Mizuki K, Hata K, Ago T, Kitajima S, Takeshige K, Sakaki Y & Ito T (1998) The PC motif: a novel and evolutionarily conserved sequence involved in interaction between p40phox and p67phox, SH3 domain-containing cytosolic factors of the phagocyte NADPH oxidase. Eur J Biochem 251, 583589.
  • 191
    Ellson CD, Gobert-Gosse S, Anderson KE, Davidson K, Erdjument-Bromage H, Tempst P, Thuring JW, Cooper MA, Lim ZY, Holmes AB et al. (2001) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat Cell Biol 3, 679682.
  • 192
    Ellson CD, Anderson KE, Morgan G, Chilvers ER, Lipp P, Stephens LR & Hawkins PT (2001) Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr Biol 11, 16311635.
  • 193
    Minakami R & Sumimoto H (2006) Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (Nox) family. Int J Hematol 84, 193198.
  • 194
    Honbou K, Minakami R, Yuzawa S, Takeya R, Suzuki NN, Kamakura S, Sumimoto H & Inagaki F (2007) Full-length p40phox structure suggests a basis for regulation mechanism of its membrane binding. EMBO J 26, 11761186.
  • 195
    Ueyama T, Tatsuno T, Kawasaki T, Tsujibe S, Shirai Y, Sumimoto H, Leto TL & Saito N (2007) A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox. Mol Biol Cell 18, 441454.
  • 196
    Bravo J, Karathanassis D, Pacold CM, Pacold ME, Ellson CD, Anderson KE, Butler PJ, Lavenir I, Perisic O, Hawkins PT et al. (2001) The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol Cell 8, 829839.
  • 197
    Ito T, Nakamura R, Sumimoto H, Takeshige K & Sakaki Y (1996) An SH3 domain-mediated interaction between the phagocyte NADPH oxidase factors p40phox and p47phox. FEBS Lett 385, 229232.
  • 198
    Dehal P & Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3, doi: DOI: 10.1371/journal.pbio.0030314.
  • 199
    Nakatani Y, Takeda H, Kohara Y & Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17, 12541265.
  • 200
    Valante AJ, El Jamali A, Epperson TK, Gamez MJ, Pearson DW & Clark RA (2007) NOX1 NADPH oxidase regulation by the NOXA1 SH3 domain. Free Rad Biol Med 43, 384396.
  • 201
    Malagnac F, Lalucque H, Lepere G & Silar P (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anseina. Fungal Genet Biol 41, 982997.
  • 202
    Tanaka A, Christensen MJ, Takemoto D, Park P & Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18, 10521066.
  • 203
    Kamiguti AS, Serrander L, Lin K, Harris RJ, Cawley JC, Allsup DJ, Slupsky JR, Krause K-H & Zuzel M (2005) Expression and activity of NOX5 in the circulating malignant B cells of hairy cell leukemia. J Immunol 175, 84248430.
  • 204
    Keller T, Damude HG, Werner D, Doerner P, Dixon RA & Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10, 255266.
  • 205
    Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27, 401410.
  • 206
    Gribaldo S & Philippe H (2002) Ancient phylogenetic relationships. Theor Popul Biol 61, 391408.
  • 207
    Baldauf SL (2003) Phylogeny for the faint of heart: a tutorial. Trends Genet 19, 345351.