SEARCH

SEARCH BY CITATION

References

  • 1
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81, 741766.
  • 2
    Terry RD, Maslia E & Hansen LA (1999) The neuropathology of Alzheimer disease and the structural basis of its cognitive alterations. In Alzheimer Disease (Terry RD, Katzman R, Bick KL & Sisodia SS, eds), pp. 187206. Lipponcott Williams and Wilikins, Philadelphia, PA.
  • 3
    Klein WL, Krafft GA & Finch CE (2001) Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24, 219224.
  • 4
    Hardy J & Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353356.
  • 5
    Haass C & Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8, 101112.
  • 6
    Walsh DM & Selkoe DJ (2007) Aβ oligomers – a decade of discovery. J Neurochem 101, 11721184.
  • 7
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW & Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486489.
  • 8
    Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M & Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352357.
  • 9
    Caughey B & Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26, 267298.
  • 10
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL et al. (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95, 64486453.
  • 11
    Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA et al. (2002) Soluble oligomers of β amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924, 133140.
  • 12
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ & Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535539.
  • 13
    Laferla FM, Green KN & Oddo S (2007) Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 8, 499509.
  • 14
    Echeverria V & Cuello AC (2002) Intracellular A-beta amyloid, a sign for worse things to come? Mol Neurobiol 26, 299316.
  • 15
    Tabira T, Chui DH & Kuroda S (2002) Significance of intracellular Aβ42 accumulation in Alzheimer’s disease. Front Biosci 7, a4449.
  • 16
    Walsh DM, Tseng BP, Rydel RE, Podlisny MB & Selkoe DJ (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39, 1083110839.
  • 17
    Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA & Gouras GK (2004) Oligomerization of Alzheimer’s β-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24, 35923599.
  • 18
    Magrane J, Smith RC, Walsh K & Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed β-amyloid in neurons. J Neurosci 24, 17001706.
  • 19
    Wirths O, Multhaup G & Bayer TA (2004) A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide – the first step of a fatal cascade. J Neurochem 91, 513520.
  • 20
    Gregori L, Fuchs C, Figueiredo-Pereira ME, Van Nostrand WE & Goldgaber D (1995) Amyloid β-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem 270, 1970219708.
  • 21
    Oh S, Hong HS, Hwang E, Sim HJ, Lee W, Shin SJ & Mook-Jung I (2005) Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech Ageing Dev 126, 12921299.
  • 22
    Almeida CG, Takahashi RH & Gouras GK (2006) β-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 26, 42774288.
  • 23
    Tseng BP, Green KN, Chan JL, Blurton-Jones M & Laferla FM (2008) Aβ inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging 29, 16071618.
  • 24
    Hartl FU & Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 18521858.
  • 25
    Bukau B, Weissman J & Horwich A (2006) Molecular chaperones and protein quality control. Cell 125, 443451.
  • 26
    Muchowski PJ & Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6, 1122.
  • 27
    Evans CG, Wisen S & Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid β-(1–42) aggregation in vitro. J Biol Chem 281, 3318233191.
  • 28
    Lee S, Carson K, Rice-Ficht A & Good T (2005) Hsp20, a novel α-crystallin, prevents Aβ fibril formation and toxicity. Protein Sci 14, 593601.
  • 29
    Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE, Rozovsky I, Stine WB, Snyder SW, Holzman TF et al. (1995) Clusterin (apoJ) alters the aggregation of amyloid β-peptide (Aβ 1–42) and forms slowly sedimenting Aβ complexes that cause oxidative stress. Exp Neurol 136, 2231.
  • 30
    Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ & Roher AE (1996) Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 271, 40774081.
  • 31
    Hansen WJ, Cowan NJ & Welch WJ (1999) Prefoldin-nascent chain complexes in the folding of cytoskeletal proteins. J Cell Biol 145, 265277.
  • 32
    Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E & Hartl FU (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin–GimC system. EMBO J 18, 7584.
  • 33
    Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL & Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93, 863873.
  • 34
    Okochi M, Nomura T, Zako T, Arakawa T, Iizuka R, Ueda H, Funatsu T, Leroux M & Yohda M (2004) Kinetics and binding sites for interaction of the prefoldin with a group II chaperonin: contiguous non-native substrate and chaperonin binding sites in the archaeal prefoldin. J Biol Chem 279, 3178831795.
  • 35
    Lundin VF, Stirling PC, Gomez-Reino J, Mwenifumbo JC, Obst JM, Valpuesta JM & Leroux MR (2004) Molecular clamp mechanism of substrate binding by hydrophobic coiled-coil residues of the archaeal chaperone prefoldin. Proc Natl Acad Sci USA 101, 43674372.
  • 36
    Zako T, Iizuka R, Okochi M, Nomura T, Ueno T, Tadakuma H, Yohda M & Funatsu T (2005) Facilitated release of substrate protein from prefoldin by chaperonin. FEBS Lett 579, 37183724.
  • 37
    Zako T, Murase Y, Iizuka R, Yoshida T, Kanzaki T, Ide N, Maeda M, Funatsu T & Yohda M (2006) Localization of prefoldin interaction sites in the hyperthermophilic group II chaperonin and correlations between binding rate and protein transfer rate. J Mol Biol 364, 110120.
  • 38
    Okochi M, Yoshida T, Maruyama T, Kawarabayasi Y, Kikuchi H & Yohda M (2002) Pyrococcus prefoldin stabilizes protein-folding intermediates and transfers them to chaperonins for correct folding. Biochem Biophys Res Commun 291, 769774.
  • 39
    Siegert R, Leroux MR, Scheufler C, Hartl FU & Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103, 621632.
  • 40
    Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA, Bartolini F, Cowan NJ & Valpuesta JM (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21, 63776386.
  • 41
    Leroux MR, Fandrich M, Klunker D, Siegers K, Lupas AN, Brown JR, Schiebel E, Dobson CM & Hartl FU (1999) MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18, 67306743.
  • 42
    Zhang J, Liu L, Zhang X, Jin F, Chen J, Ji C, Gu S, Xie Y & Mao Y (2006) Cloning and characterization of a novel human prefoldin and SPEC domain protein gene (PFD6L) from the fetal brain. Biochem Genet 44, 6974.
  • 43
    LeVine H III (1993) Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2, 404410.
  • 44
    Necula M, Kayed R, Milton S & Glabe CG (2007) Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282, 1031110324.
  • 45
    Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL et al. (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2, 18.
  • 46
    Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P et al. (2003) Self-assembly of Aβ(1–42) into globular neurotoxins. Biochemistry 42, 1274912760.
  • 47
    Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ & Cotman CW (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90, 79517955.
  • 48
    Stege GJ, Renkawek K, Overkamp PS, Verschuure P, van Rijk AF, Reijnen-Aalbers A, Boelens WC, Bosman GJ & de Jong WW (1999) The molecular chaperone αB-crystallin enhances amyloid β neurotoxicity. Biochem Biophys Res Commun 262, 152156.
  • 49
    Ray I, Chauhan A, Wisniewski HM, Wegiel J, Kim KS & Chauhan VP (1998) Binding of amyloid beta-protein to intracellular brain proteins in rat and human. Neurochem Res 23, 12771282.
  • 50
    Oyama R, Yamamoto H & Titani K (2000) Glutamine synthetase, hemoglobin α-chain, and macrophage migration inhibitory factor binding to amyloid β-protein: their identification in rat brain by a novel affinity chromatography and in Alzheimer’s disease brain by immunoprecipitation. Biochim Biophys Acta 1479, 91102.
  • 51
    Ohtaki A, Kida H, Miyata Y, Ide N, Yonezawa A, Arakawa T, Iizuka R, Noguchi K, Kita A, Odaka M et al. (2008) Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins. J Mol Biol 376, 11301141.
  • 52
    Martin-Benito J, Gomez-Reino J, Stirling PC, Lundin VF, Gomez-Puertas P, Boskovic J, Chacon P, Fernandez JJ, Berenguer J, Leroux MR et al. (2007) Divergent substrate-binding mechanisms reveal an evolutionary specialization of eukaryotic prefoldin compared to its archaeal counterpart. Structure 15, 101110.
  • 53
    Rommelaere H, De Neve M, Neirynck K, Peelaers D, Waterschoot D, Goethals M, Fraeyman N, Vandekerckhove J & Ampe C (2001) Prefoldin recognition motifs in the nonhomologous proteins of the actin and tubulin families. J Biol Chem 276, 4102341028.
  • 54
    Iizuka R, Sugano Y, Ide N, Ohtaki A, Yoshida T, Fujiwara S, Imanaka T & Yohda M (2008) Functional characterization of recombinant prefoldin complexes from a hyperthermophilic archaeon, Thermococcus sp. strain KS-1. J Mol Biol 377, 972983.
  • 55
    Liu Y, Peterson DA, Kimura H & Schubert D (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69, 581593.