SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Rafael G. Silva, Kieran F. Geoghegan, Xiayang Qiu, Ann Aulabaugh, A continuous and direct assay to monitor leucine-rich repeat kinase 2 activity, Analytical Biochemistry, 2014, 450, 63

    CrossRef

  2. 2
    Ian Martin, Leire Abalde-Atristain, Jungwoo Wren Kim, Ted M Dawson, Valina L Dawson, Abberant protein synthesis in G2019S LRRK2DrosophilaParkinson disease-related phenotypes, Fly, 2014, 8, 3, 165

    CrossRef

  3. 3
    David A. Szalewski, Jon R. Beck, Cliff I. Stains, Design, synthesis, and evaluation of a selective chemosensor for leucine-rich repeat kinase 2, Bioorganic & Medicinal Chemistry Letters, 2014, 24, 24, 5648

    CrossRef

  4. 4
    Izabella D. Greene, Francis Mastaglia, Bruno P. Meloni, Kristin A. West, Joanne Chieng, Chris J. Mitchell, Wei-Ping Gai, Sherif Boulos, Evidence that the LRRK2 ROC domain Parkinson's disease-associated mutants A1442P and R1441C exhibit increased intracellular degradation, Journal of Neuroscience Research, 2014, 92, 4
  5. 5
    Sagar S. Bhayye, Kunal Roy, Achintya Saha, Exploring structural requirement, pharmacophore modeling, and de novo design of LRRK2 inhibitors using homology modeling approach, Medicinal Chemistry Research, 2014, 23, 8, 3705

    CrossRef

  6. 6
    Iakov N. Rudenko, Mark R. Cookson, Heterogeneity of Leucine-Rich Repeat Kinase 2 Mutations: Genetics, Mechanisms and Therapeutic Implications, Neurotherapeutics, 2014, 11, 4, 738

    CrossRef

  7. 7
    Raghava R Kethiri, Rajagopal Bakthavatchalam, Leucine-rich repeat kinase 2 inhibitors: a review of recent patents (2011 – 2013), Expert Opinion on Therapeutic Patents, 2014, 24, 7, 745

    CrossRef

  8. 8
    Isabella Russo, Luigi Bubacco, Elisa Greggio, LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease?, Journal of Neuroinflammation, 2014, 11, 1, 52

    CrossRef

  9. 9
    K. Muda, D. Bertinetti, F. Gesellchen, J. S. Hermann, F. von Zweydorf, A. Geerlof, A. Jacob, M. Ueffing, C. J. Gloeckner, F. W. Herberg, Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3, Proceedings of the National Academy of Sciences, 2014, 111, 1, E34

    CrossRef

  10. 10
    Gregory C. Luerman, Chuong Nguyen, Harry Samaroo, Paula Loos, Hualin Xi, Andres Hurtado-Lorenzo, Elie Needle, G. Stephen Noell, Paul Galatsis, John Dunlop, Kieran F. Geoghegan, Warren D. Hirst, Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1, Journal of Neurochemistry, 2014, 128, 4
  11. 11
    Ryan D. Mills, Terrence D. Mulhern, Fei Liu, Janetta G. Culvenor, Heung-Chin Cheng, Prediction of the Repeat Domain Structures and Impact of Parkinsonism-Associated Variations on Structure and Function of all Functional Domains of Leucine-Rich Repeat Kinase 2 (LRRK2), Human Mutation, 2014, 35, 4
  12. 12
    Ian Martin, Jungwoo Wren Kim, Byoung Dae Lee, Ho Chul Kang, Jin-Chong Xu, Hao Jia, Jeannette Stankowski, Min-Sik Kim, Jun Zhong, Manoj Kumar, Shaida A. Andrabi, Yulan Xiong, Dennis W. Dickson, Zbigniew K. Wszolek, Akhilesh Pandey, Ted M. Dawson, Valina L. Dawson, Ribosomal Protein s15 Phosphorylation Mediates LRRK2 Neurodegeneration in Parkinson’s Disease, Cell, 2014, 157, 2, 472

    CrossRef

  13. 13
    Fernando Cardona, Marta Tormos-Pérez, Jordi Pérez-Tur, Structural and functional in silico analysis of LRRK2 missense substitutions, Molecular Biology Reports, 2014, 41, 4, 2529

    CrossRef

  14. 14
    Bernd K. Gilsbach, Arjan Kortholt, Structural biology of the LRRK2 GTPase and kinase domains: implications for regulation, Frontiers in Molecular Neuroscience, 2014, 7,

    CrossRef

  15. 15
    Hardy J. Rideout, Leonidas Stefanis, The Neurobiology of LRRK2 and its Role in the Pathogenesis of Parkinson’s Disease, Neurochemical Research, 2014, 39, 3, 576

    CrossRef

  16. 16
    Liang Huang, Mika Shimoji, Juan Wang, Salim Shah, Sukanta Kamila, Edward R. Biehl, Seung Lim, Allison Chang, Kathleen A. Maguire-Zeiss, Xiaomin Su, Howard J. Federoff, Development of Inducible Leucine-rich Repeat Kinase 2 (LRRK2) Cell Lines for Therapeutics Development in Parkinson’s Disease, Neurotherapeutics, 2013, 10, 4, 840

    CrossRef

  17. 17
    Etsuro Ohta, Fumitaka Kawakami, Makoto Kubo, Fumiya Obata, Dominant-negative effects of LRRK2 heterodimers: A possible mechanism of neurodegeneration in Parkinson’s disease caused by LRRK2 I2020T mutation, Biochemical and Biophysical Research Communications, 2013, 430, 2, 560

    CrossRef

  18. 18
    Rachel M. Bailey, Jason P. Covy, Heather L. Melrose, Linda Rousseau, Ruth Watkinson, Joshua Knight, Sarah Miles, Matthew J. Farrer, Dennis W. Dickson, Benoit I. Giasson, Jada Lewis, LRRK2 phosphorylates novel tau epitopes and promotes tauopathy, Acta Neuropathologica, 2013, 126, 6, 809

    CrossRef

  19. 19
    Salvatore J. Cherra, Erin Steer, Aaron M. Gusdon, Kirill Kiselyov, Charleen T. Chu, Mutant LRRK2 Elicits Calcium Imbalance and Depletion of Dendritic Mitochondria in Neurons, The American Journal of Pathology, 2013, 182, 2, 474

    CrossRef

  20. 20
    Madeline E. Kavanagh, Munikumar Reddy Doddareddy, Michael Kassiou, The development of CNS-active LRRK2 inhibitors using property-directed optimisation, Bioorganic & Medicinal Chemistry Letters, 2013, 23, 13, 3690

    CrossRef

  21. 21
    Nicolas Dzamko, Glenda M Halliday, Unlocking the secrets of LRRK2 function with selective kinase inhibitors, Future Neurology, 2013, 8, 3, 347

    CrossRef

  22. 22
    Soumya Ray, Min Liu, Current understanding of LRRK2 in Parkinson’s disease: biochemical and structural features and inhibitor design, Future Medicinal Chemistry, 2012, 4, 13, 1701

    CrossRef

  23. 23
    Laura Civiero, Luigi Bubacco, Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?, Biochemical Society Transactions, 2012, 40, 5, 1095

    CrossRef

  24. 24
    Iakov N Rudenko, Ruth Chia, Mark R Cookson, Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson's disease?, BMC Medicine, 2012, 10, 1, 20

    CrossRef

  25. 25
    Byoung Dae Lee, Valina L. Dawson, Ted M. Dawson, Leucine-rich repeat kinase 2 (LRRK2) as a potential therapeutic target in Parkinson's disease, Trends in Pharmacological Sciences, 2012, 33, 7, 365

    CrossRef

  26. 26
    Xianming Deng, Hwan Geun Choi, Sara J. Buhrlage, Nathanael S. Gray, Leucine-rich repeat kinase 2 inhibitors: a patent review (2006 – 2011), Expert Opinion on Therapeutic Patents, 2012, 22, 12, 1415

    CrossRef

  27. 27
    Todd B. Sherer, Sohini Chowdhury, Katherine Peabody, Deborah W. Brooks, Overcoming obstacles in Parkinson's disease, Movement Disorders, 2012, 27, 13
  28. 28
    Jing Zhao, Spencer B. Hermanson, Coby B. Carlson, Steven M. Riddle, Kurt W. Vogel, Kun Bi, R. Jeremy Nichols, Pharmacological inhibition of LRRK2 cellular phosphorylation sites provides insight into LRRK2 biology, Biochemical Society Transactions, 2012, 40, 5, 1158

    CrossRef

  29. 29
    Brian R Haas, Tessandra H Stewart, Jing Zhang, Premotor biomarkers for Parkinson's disease - a promising direction of research, Translational Neurodegeneration, 2012, 1, 1, 11

    CrossRef

  30. 30
    B. K. Gilsbach, F. Y. Ho, I. R. Vetter, P. J. M. van Haastert, A. Wittinghofer, A. Kortholt, Roco kinase structures give insights into the mechanism of Parkinson disease-related leucine-rich-repeat kinase 2 mutations, Proceedings of the National Academy of Sciences, 2012, 109, 26, 10322

    CrossRef

  31. 31
    Elisa Greggio, Role of LRRK2 kinase activity in the pathogenesis of Parkinson's disease, Biochemical Society Transactions, 2012, 40, 5, 1058

    CrossRef

  32. 32
    Thomas Kramer, Fabio Lo Monte, Stefan Göring, Ghislaine Marlyse Okala Amombo, Boris Schmidt, Small Molecule Kinase Inhibitors for LRRK2 and Their Application to Parkinson's Disease Models, ACS Chemical Neuroscience, 2012, 3, 3, 151

    CrossRef

  33. 33
    Sheila A Doggrell, A new approach to Parkinson's disease: inhibition of leucine-rich repeat kinase-2, Expert Opinion on Investigational Drugs, 2011, 427

    CrossRef

  34. 34
    Philip J. Webber, Archer D. Smith, Saurabh Sen, Matthew B. Renfrow, James A. Mobley, Andrew B. West, Autophosphorylation in the Leucine-Rich Repeat Kinase 2 (LRRK2) GTPase Domain Modifies Kinase and GTP-Binding Activities, Journal of Molecular Biology, 2011, 412, 1, 94

    CrossRef

  35. 35
    Xianming Deng, Nicolas Dzamko, Alan Prescott, Paul Davies, Qingsong Liu, Qingkai Yang, Jiing-Dwan Lee, Matthew P Patricelli, Tyzoon K Nomanbhoy, Dario R Alessi, Nathanael S Gray, Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2, Nature Chemical Biology, 2011, 7, 4, 203

    CrossRef

  36. 36
    Nigel Ramsden, Jessica Perrin, Zhao Ren, Byoung Dae Lee, Nico Zinn, Valina L. Dawson, Danny Tam, Michael Bova, Manja Lang, Gerard Drewes, Marcus Bantscheff, Frederique Bard, Ted M. Dawson, Carsten Hopf, Chemoproteomics-Based Design of Potent LRRK2-Selective Lead Compounds That Attenuate Parkinson’s Disease-Related Toxicity in Human Neurons, ACS Chemical Biology, 2011, 6, 10, 1021

    CrossRef

  37. You have free access to this content37
    Veronique Daniëls, Renée Vancraenenbroeck, Bernard M. H. Law, Elisa Greggio, Evy Lobbestael, Fangye Gao, Marc De Maeyer, Mark R. Cookson, Kirsten Harvey, Veerle Baekelandt, Jean-Marc Taymans, Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant, Journal of Neurochemistry, 2011, 116, 2
  38. 38
    M. C. Herzig, C. Kolly, E. Persohn, D. Theil, T. Schweizer, T. Hafner, C. Stemmelen, T. J. Troxler, P. Schmid, S. Danner, C. R. Schnell, M. Mueller, B. Kinzel, A. Grevot, F. Bolognani, M. Stirn, R. R. Kuhn, K. Kaupmann, P. H. van der Putten, G. Rovelli, D. R. Shimshek, LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice, Human Molecular Genetics, 2011, 20, 21, 4209

    CrossRef

  39. 39
    M Lichtenberg, A Mansilla, V R Zecchini, A Fleming, D C Rubinsztein, The Parkinson's disease protein LRRK2 impairs proteasome substrate clearance without affecting proteasome catalytic activity, Cell Death and Disease, 2011, 2, 8, e196

    CrossRef

  40. 40
    Liliana Pedro, Jaime Padrós, Lucille Beaudet, Hans-Dieter Schubert, Frank Gillardon, Sophie Dahan, Development of a high-throughput AlphaScreen assay measuring full-length LRRK2(G2019S) kinase activity using moesin protein substrate, Analytical Biochemistry, 2010, 404, 1, 45

    CrossRef

  41. 41
    Karen Nuytemans, Jessie Theuns, Marc Cruts, Christine Van Broeckhoven, Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update, Human Mutation, 2010, 31, 7
  42. 42
    Nicolas Dzamko, Maria Deak, Faycal Hentati, Alastair D. Reith, Alan R. Prescott, Dario R. Alessi, R. Jeremy Nichols, Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser910/Ser935, disruption of 14-3-3 binding and altered cytoplasmic localization, Biochemical Journal, 2010, 430, 3, 405

    CrossRef

  43. 43
    Byoung Dae Lee, Joo-Ho Shin, Jackalina VanKampen, Leonard Petrucelli, Andrew B West, Han Seok Ko, Yun-Il Lee, Kathleen A Maguire-Zeiss, William J Bowers, Howard J Federoff, Valina L Dawson, Ted M Dawson, Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease, Nature Medicine, 2010, 16, 9, 998

    CrossRef

  44. 44
    Jean-Marc Taymans, Mark R. Cookson, Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, α-synuclein, and tau, BioEssays, 2010, 32, 3
  45. 45
    Etsuro Ohta, Makoto Kubo, Fumiya Obata, Prevention of intracellular degradation of I2020T mutant LRRK2 restores its protectivity against apoptosis, Biochemical and Biophysical Research Communications, 2010, 391, 1, 242

    CrossRef

  46. 46
    Jason P. Covy, Benoit I. Giasson, The G2019S pathogenic mutation disrupts sensitivity of leucine-rich repeat kinase 2 to manganese kinase inhibition, Journal of Neurochemistry, 2010, 115, 1
  47. 47
    Philip A Robinson, Understanding the molecular basis of Parkinson’s disease, identification of biomarkers and routes to therapy, Expert Review of Proteomics, 2010, 7, 4, 565

    CrossRef

  48. 48
    Etsuro Ohta, Yuri Katayama, Fumitaka Kawakami, Matsuri Yamamoto, Kana Tajima, Tatsunori Maekawa, Naoyuki Iida, Seisuke Hattori, Fumiya Obata, I2020T leucine-rich repeat kinase 2, the causative mutant molecule of familial Parkinson’s disease, has a higher intracellular degradation rate than the wild-type molecule, Biochemical and Biophysical Research Communications, 2009, 390, 3, 710

    CrossRef

  49. 49
    Elisa Greggio, Mark R Cookson, Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions, ASN NEURO, 2009, 1, 1, 13

    CrossRef

  50. 50
    Vasanti S. Anand, Steven P. Braithwaite, LRRK2 in Parkinson’s disease: biochemical functions, FEBS Journal, 2009, 276, 22
  51. 51
    R. Jeremy Nichols, Nicolas Dzamko, Jessica E. Hutti, Lewis C. Cantley, Maria Deak, Jennifer Moran, Paul Bamborough, Alastair D. Reith, Dario R. Alessi, Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease, Biochemical Journal, 2009, 424, 1, 47

    CrossRef

  52. 52
    Elisa Greggio, Jean-Marc Taymans, Eugene Yuejun Zhen, John Ryder, Renée Vancraenenbroeck, Alexandra Beilina, Peng Sun, Junpeng Deng, Howard Jaffe, Veerle Baekelandt, Kalpana Merchant, Mark R. Cookson, The Parkinson’s disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites, Biochemical and Biophysical Research Communications, 2009, 389, 3, 449

    CrossRef

  53. 53
    Haitao Zhu, Huifen Chen, William Cho, Anthony A. Estrada, Zachary K. Sweeney, From Human Genetics to Drug Candidates: An Industrial Perspective on LRRK2 Inhibition as a Treatment for Parkinson's Disease,