• 1
    Atherton JC (2006) The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol 1, 6396.
  • 2
    Dhar SK, Soni RK, Das BK & Mukhopadhyay G (2003) Molecular mechanism of action of major Helicobacter pylori virulence factors. Mol Cell Biochem 253, 207215.
  • 3
    Dore MP, Piana A, Carta M, Atzei A, Are BM, Mura I, Massarelli G, Maida A, Sepulveda AR, Graham DY et al. (1998) Amoxycillin resistance is one reason for failure of amoxycillin–omeprazole treatment of Helicobacter pylori infection. Aliment Pharmacol Ther 12, 635639.
  • 4
    Niv Y (2008) H. pylori recurrence after successful eradication. World J Gastroenterol 14, 14771478.
  • 5
    Catrenich CE & Makin KM (1991) Characterization of the morphologic conversion of Helicobacter pylori from bacillary to coccoid forms. Scand J Gastroenterol 26(Suppl. 181), 5864.
  • 6
    Cellini L, Allocati N, Angelucci D, Lezzi T, Di Campli E, Marzio L & Dainelli B (1994) Coccoid Helicobacter pylori not culturable in vitro reverts in mice. Microbiol Immunol 38, 843850.
  • 7
    Cellini L (1996) Coccoid forms of Helicobacter pylori. J Infect Dis 173, 1288.
  • 8
    Chan WY, Hui PK, Leung K, Chow J, Kwok F & Ng CS (1994) Coccoid forms of Helicobacter pylori in the human stomach. Am J Clin Pathol 102, 503507.
  • 9
    Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539547.
  • 10
    Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL et al. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176180.
  • 11
    Soni RK, Mehra P, Choudhury NR, Mukhopadhyay G & Dhar SK (2003) Functional characterization of Helicobacter pylori DnaB helicase. Nucleic Acids Res 31, 68286840.
  • 12
    Soni RK, Mehra P, Mukhopadhyay G & Dhar SK (2005) Helicobacter pylori DnaB helicase can bypass Escherichia coli DnaC function in vivo. Biochem J 389, 541548.
  • 13
    Nitharwal RG, Paul S, Dar A, Choudhury NR, Soni RK, Prusty D, Sinha S, Kashav T, Mukhopadhyay G, Chaudhuri TK et al. (2007) The domain structure of Helicobacter pylori DnaB helicase: the N-terminal domain can be dispensable for helicase activity whereas the extreme C-terminal region is essential for its function. Nucleic Acids Res 35, 28612874.
  • 14
    Zawilak-Pawlik A, Kois A, Stingl K, Boneca IG, Skrobuk P, Piotr J, Lurz R, Zakrzewska-Czerwińska J & Labigne A (2007) HobA – a novel protein involved in initiation of chromosomal replication in Helicobacter pylori. Mol Microbiol 65, 979994.
  • 15
    Natrajan G, Hall DR, Thompson AC, Gutsche I & Terradot L (2007) Structural similarity between the DnaA-binding proteins HobA (HP1230) from Helicobacter pylori and DiaA from Escherichia coli. Mol Microbiol 65, 9951005.
  • 16
    Shamoo Y, Friedman AM, Parsons MR, Konigsberg WH & Steitz TA (1995) Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376, 362366.
  • 17
    Webster G, Genschel J, Curth U, Urbanke C, Kang C & Hilgenfeld R (1997) A common core for binding single-stranded DNA: structural comparison of the single-stranded DNA-binding proteins (SSB) from E. coli and human mitochondria. FEBS Lett 411, 313316.
  • 18
    Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12, 861867.
  • 19
    Kinebuchi T, Shindo H, Nagai H, Shimamoto N & Shimizu M (1997) Functional domains of Escherichia coli single-stranded DNA binding protein as assessed by analyses of the deletion mutants. Biochemistry 36, 67326738.
  • 20
    Kelman Z, Yuzhakov A, Andjelkovic J & O’Donnell M (1998) Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J 17, 24362449.
  • 21
    Richard DJ, Bell SD & White MF (2004) Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Res 32, 10651074.
  • 22
    Biswas EE, Chen PH & Biswas SB (2002) Modulation of enzymatic activities of Escherichia coli DnaB helicase by single-stranded DNA-binding proteins. Nucleic Acids Res 30, 28092816.
  • 23
    Cadman CJ & McGlynn P (2004) PriA helicase and SSB interact physically and functionally. Nucleic Acids Res 32, 63786387.
  • 24
    Curth U, Genschel J, Urbanke C & Greipel J (1996) In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res 24, 27062711.
  • 25
    Khamis MI, Casas-Finet JR, Maki AH, Murphy JB & Chase JW (1987) Investigation of the role of individual tryptophan residues in the binding of Escherichia coli single-stranded DNA binding protein to single-stranded polynucleotides. A study by optical detection of magnetic resonance and site-selected mutagenesis. J Biol Chem 262, 1093810945.
  • 26
    Curth U, Bayer I, Greipel J, Mayer F, Urbanke C & Maass G (1991) Amino acid 55 plays a central role in tetramerization and function of Escherichia coli single-stranded DNA binding protein. Eur J Biochem 196, 8793.
  • 27
    Handa P, Acharya N, Thanedar S, Purnapatre K & Varshney U (2000) Distinct properties of Mycobacterium tuberculosis single-stranded DNA binding protein and its functional characterization in Escherichia coli. Nucleic Acids Res 28, 38233829.
  • 28
    Reyes-Lamothe R, Possoz C, Danilova O & Sherratt DJ (2008) Independent positioning and action of Escherichia coli replisomes in live cells. Cell 133, 90102.
  • 29
    Genschel J, Curth U & Urbanke C (2000) Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem 381, 183192.
  • 30
    Kusters JG, Gerrits MM, Van Strip JAG & Vandebroucke-grauls MJE (1997) Coccoid forms of Helicobacter pylori are the morphologic manifestation of cell death. Infect Immun 65, 36723679.
  • 31
    Bode G, Mauch F & Malfertheiner P (1993) The coccoid forms of Helicobacter pylori. Criteria for their viability. Epidemiol Infect 111, 483490.
  • 32
    Cole SP, Cirillo D, Kagnoff MF, Guiney DG & Eckmann L (1997) Coccoid and spiral Helicobacter pylori differ in their abilities to adhere to gastric epithelial cells and induce interleukin-8 secretion. Infect Immun 65, 843846.
  • 33
    So¨renberg M, Nilsson M, Hanberger H & Nilsson LE (1996) Morphologic conversion of Helicobacter pylori from bacillary to coccoid form. Eur J Clin Microbiol Infect Dis 15, 216219.
  • 34
    Mizoguchi H, Fujioka T, Kishi K, Nishizono A, Kodama R & Nasu M (1998) Diversity in protein synthesis and viability of Helicobacter pylori coccoid forms in response to various stimuli. Infect Immun 66, 55555560.
  • 35
    Enroth H, Wreiber K, Rigo R, Risberg D, Uribe A & Engstrand L (1999) In vitro aging of Helicobacter pylori: changes in morphology, intracellular composition and surface properties. Helicobacter 4, 716.
  • 36
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K (eds) (1999) Short Protocols in Molecular Biology, 4th edn, pp. 122. John Wiley & Sons, New York, NY.
  • 37
    Sambrook J, Fritsch EF & Maniatis T (ed.) (1989) Molecular Cloning: A Laboratory Manual, 2nd edn, pp. 4.214.32. Cold Spring Harbor Press, Cold Spring Harbor, NY.
  • 38
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K (eds) (1998) Current Protocols in Molecular Biology. Vol. 1, pp. 1.1.1. John Wiley & Sons, New York, NY.
  • 39
    Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE & Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 15671572.
  • 40
    Harlow E & Lane D (1988) Antibodies. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.