SEARCH

SEARCH BY CITATION

References

  • 1
    Golightly A & Wilkinson DJ (2005) Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61, 781788.
  • 2
    Timmer J (2000) Parameter estimation in nonlinear stochastic differential equations. Chaos Solitons Fractals 11, 25712578.
  • 3
    Reinker S, Altman RM & Timmer J (2006) Parameter estimation in stochastic biochemical reactions. IEE Proc-Syst Biol 153, 168178.
  • 4
    Jaqaman K & Danuser G (2006) Linking data to models: data regression. Nat Rev Mol Cell Biol 7, 813819.
  • 5
    Rodriguez-Fernandez M, Mendes P & Banga JR (2006) A hybrid approach for efficient and robust parameter estimation in biochemical pathways. BioSystems 83, 248265.
  • 6
    Schittkowski K (2002) Numerical Data Fitting in Dynamical Systems – A Practical Introduction with Applications and Software. Kluwer Academic Publishers, Dordrecht.
  • 7
    Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR & Sethna JP (2007) Universally sloppy parameter sensitivities in systems biology models. PLOS Comp Biol 3, 18711878.
  • 8
    Ashyraliyev M, Jaeger J, & Blom JG (2008) Parameter estimation and determinability analysis applied to Drosophila gap gene circuits. BMC Systems Biology 2, 83, doi: DOI: 10.1186/1752-0509-2-83.
  • 9
    Ljung L (1999) System Identification – Theory For the User. Prentice Hall, Upper Saddle River, NJ.
  • 10
    Mendes P & Kell DB (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14, 869883.
  • 11
    Moles CG, Mendes P & Banga JR (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13, 24672474.
  • 12
    Aster RC, Borchers B & Thurber CH (2005) Parameter Estimation and Inverse Problems. Elsevier Academic Press, Burlington, MA.
  • 13
    Seber GAF & Wild CJ (1988) Nonlinear Regression. John Wiley & Sons, Inc, New York, NY.
  • 14
    Draper NR & Smith H (1988) Applied Regression Analysis. John Wiley & Sons, Inc, New York, NY.
  • 15
    Maple. Available at: http://www.maplesoft.com/
  • 16
    Mathematica. Available at: http://www.wolfram.com/
  • 17
    Pohjanpalo J (1978) System identifiability based on the power series expansion of the solution. Math Biosci 41, 2133.
  • 18
    Godfrey KR & Fitch WR (1984) The deterministic identifiability of nonlinear pharmacokinetic models. J Pharmacokinet Biopharm 12, 177191.
  • 19
    Vajda S, Godfrey KR & Rabitz H (1989) Similarity transformation approach to structural identifiability of nonlinear models. Math Biosci 93, 217248.
  • 20
    Evans ND, Chapman MJ, Chappell MJ & Godfrey KR (2002) Identifiability of uncontrolled nonlinear rational systems. Automatica 38, 17991805.
  • 21
    Peeters RLM & Hanzon B (2005) Identifiability of homogeneous systems using the state isomorphism approach. Automatica 41, 513529.
  • 22
    Chappel MJ, Godfrey KR & Vajda S (1990). Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. Math Biosci 102, 4173.
  • 23
    Audoly S, Bellu G, D’ Angiò L, Saccomani MP & Cobelli C (2001) Global identifiability of nonlinear models of biological systems. IEEE Trans Biomed Eng 48, 5565.
  • 24
    Bellu G, Saccomani MP, Audoly S & D’ Angiò L (2007) DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput Methods Programs Biomed 88, 5261.
  • 25
    REDUCE. Available at: http://www.reduce-algebra.com/
  • 26
    Hidalgo ME & Ayesa E (2001) Numerical and graphical description of the information matrix in calibration experiments for state-space models. Wat Res 35, 32063214.
  • 27
    Heng S, Kreutz C, Timmer J & Maiwald T (2007) Data-based identifiability analysis of non-linear dynamical models. Bioinformatics 23, 26122618.
  • 28
    Breiman L & Friedman J (1985) Estimating optimal transformations for multiple regression and correlation. J Am Stat Assoc 80, 580598.
  • 29
    MATLAB. Available at: http://www.mathworks.com/
  • 30
    PottersWheel. Available at: http://www.potterswheel.de/
  • 31
    Bentele M, Lavrik I, Ulrich M, Stößer S, Heermann DW, Kalthoff H, Krammer PH & Eils R (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166, 839851.
  • 32
    Bentele M (2004) Stochastic simulation and system identification of large signal transduction networks in cells. PhD thesis, University of Heidelberg, Germany.
  • 33
    Stortelder WJH (1998) Parameter estimation in nonlinear dynamical systems. PhD Thesis, University of Amsterdam, the Netherlands.
  • 34
    Kutalik Z, Cho KH & Wolkenhauer O (2004) Optimal sampling time selection for parameter estimation in dynamic pathway modelling. Biosystems 75, 4355.
  • 35
    Byrd RH, Schnabel RB & Shultz GA (1988) Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math Programming 40, 247263.
  • 36
    Fomekong-Nanfack Y, Kaandorp JA & Blom J (2007) Efficient parameter estimation for spatio-temporal models of pattern formation: case study of Drosophila melanogaster. Bioinformatics 23, 33563363.
  • 37
    Kirkpatrick S, Gelatt CD & Vecchi MP (1983) Optimization by simulated annealing. Science 220, 671680.
  • 38
    Metropolis N, Rosenbluth AW, Rosenbluth MN & Teller AH (1953) Equation of state calculations by fast computing machines. J Chem Phys 21, 10871092.
  • 39
    van Laarhoven PJM & Aarts EHL (1987) Simulated Annealing: Theory and Applications. Kluwer Academic Publishers, Dordrecht.
  • 40
    Boese KD (1996) Models for iterative global optimization. PhD thesis, University of California at Los Angeles, Los Angeles, CA.
  • 41
    Geman S & Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6, 721.
  • 42
    Hajek B (1988) Cooling schedules for optimal annealing. Math Oper Res 13:311329.
  • 43
    Johnson DS, Aragon CR, McGeoch LA & Schevon C (1989) Optimization by simulated annealing: an experimental evaluation; part 1, graph partitioning. Oper Res 37, 865892.
  • 44
    Lam J & Delosme J-M (1988) An Efficient Simulated Annealing Schedule: Derivation. Technical Report 8816, Electrical Engineering Department, Yale, New Haven, CT.
  • 45
    Lam J & Delosme J-M (1988) An Efficient Simulated Annealing Schedule: Implementation and Evaluation. Technical Report 8817, Electrical Engineering Department, New Haven, CT.
  • 46
    Ingber L (1989) Very fast simulated reannealing. Math Comput Modelling 12, 967.
  • 47
    Ingber, L & Rosen B (1992) Genetic algorithms and very fast simulated annealing – a comparison. Math Comput Modeling 16, 87100.
  • 48
    Ingber L (1996) Adaptive simulated annealing (asa): lessons learned. Control Cybern 25, 33.
  • 49
    Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, New York, NY.
  • 50
    Bäck T & Hoffmeister F (1991) Extended Selection Mechanisms in Genetic Algorithms. In Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA-4) (Belew RK & Booker LB, eds), pp. 9299. Morgan Kaufmann, San Mateo, CA.
  • 51
    Whitley D (1989) The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In Proceedings of the Third International Conference on Genetic Algorithms (Schaffer JD, ed.), pp. 116121, Morgan Kaufmann Publishers Inc., San Francisco, CA.
  • 52
    Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. In Proceedings of the Second International Conference on Genetic Algorithms and their Application, (Grefenstette JJ, ed.), pp. 1421. Lawrence Erlbaum Associates, Hillsdale, NJ.
  • 53
    Miller BL (1997) Noise, sampling, and efficient genetic algorithms. PhD thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
  • 54
    Lawler EL & Wood DE (1966) Branch-and-bound methods: a survey. Oper Res 14, 699719.
  • 55
    Mitten LG (1970) Branch-and-bound methods: general formulation and properties. Oper Res 18:2434.
  • 56
    Koza JR, Andre D, Bennett FH & Keane MA (1999) Genetic Programming III: Darwinian Invention & Problem Solving. Morgan Kaufmann Publishers Inc., San Francisco, CA.
  • 57
    Forrest S (1993) Genetic algorithms: principles of natural selection applied to computation. Science 261,872878.
  • 58
    Runarsson TP & Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4, 284294.
  • 59
    Zi Z & Klipp E (2006) SBML-PET: a systems biology markup language based parameter estimation tool. Bioinformatics 22, 27042705.
  • 60
    Hooke R & Jeeves TA (1961) Direct search solution of numerical and statistical problems. J Assoc Comput Mach 8, 212229.
  • 61
    Wright MH (1995) Direct search methods: once scorned, now respectable. In Proceedings of the 1995 Biennial Dundee Conference on Numerical Analysis (Griffiths DF & Watson GA, eds), pp. 191208, Addison Wesley Longman, Harlow, UK.
  • 62
    Powell MJD (1998) Direct search algorithms for optimization calculations. Acta Numerica 7, 287336.
  • 63
    Kolda TG, Lewis RM & Torczon V (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45, 385482.
  • 64
    Nelder, JA & Mead R (1965) A simplex method for function minimization. Comput J 7, 308-313.
  • 65
    Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7, 125.
  • 66
    Lagarias JC, Reeds JA, Wright MH & Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9, 112147.
  • 67
  • 68
    Ampl. Available at: http://www.ampl.com/
  • 69
    Gams. Available at: http://www.gams.com/
  • 70
    Nocedal J & Wright SJ (1999) Numerical Optimization. Springer, New York, NY.
  • 71
    Dennis JE Jr & Schnabel RB (1983) Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs, NJ.
  • 72
    Conn AR, Gould IM & Toint PL (2000) Trust-Region Methods. Number 1 in MPS/SIAM Ser. Optim. SIAM, Philadelphia, PA.
  • 73
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11, 431441.
  • 74
    Bus JCP, van Domselaar B & Kok J (1975) Nonlinear Least Squares Estimation. Report NW 17/75, Stichting Mathematisch Centrum, Amsterdam.
  • 75
    Madsen K, Nielsen HB & Tingleff O (2004) Methods for Non-Linear Least Squares Problems. IMM, DTU, Denmark.
  • 76
    McKinnon KIM (1998) Convergence of the Nelder-Mead simplex method to a nonstationary point. SIAM J Optim 9, 148158.
  • 77
    Timmer J (1998) Modeling noisy time series: physiological tremor. Int J Bifurcation Chaos 8, 15051516.
  • 78
    Katare S, Kalos A & West D (2004) A hybrid swarm optimizer for efficient parameter estimation. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation (Greenwood GW, ed.), pp. 309315, 20–23 June, IEEE Press, Portland, OR.
  • 79
    Katare S, Bhan A, Caruthers JM, Delgass WN & Venkatasubramanian V (2004) A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Comput Chem Eng 28, 25692581.
  • 80
    Kennedy J (1998) The behavior of particles. In EP ’98: Proceedings of the 7th International Conference on Evolutionary Programming VII (Porto VW, Saravanan N, Waagen D & Eiben AE, eds.), pp. 581589, Springer-Verlag, London, UK.
  • 81
    Kennedy J & Eberhart RC (2001) Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA.
  • 82
    Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Myasnikova E, Vanario-Alonso CE, Samsonova M, Sharp DH, & Reinitz J (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368371
  • 83
    Laguna M & Marti R (2005) Experimental testing of advanced scatter search design for global optimization of multimodal functions. J. Global Optim 33, 235255.
  • 84
    Rodriguez-Fernandez M, Egea JA & Banga JR (2006) Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics 7, 483.
  • 85
    Egea JA, Rodríguez-Fernández M, Banga JR & Martí R (2007) Scatter search for chemical and bio-process optimization. J Glob Optim 37, 481503.
  • 86
    van Riel NAW (2006) Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinform 7, 364374.