• 1
    Reche P & Perham RN (1999) Structure and selectivity in post-translational modification: attaching the biotinyl–lysine and lipoyl–lysine swinging arms in multifunctional enzymes. EMBO J 18, 26732682.
  • 2
    Argyrou A & Blanchard JS (2004) Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol 78, 89142.
  • 3
    Xie L & van der Donk WA (2001) Homemade cofactors: self-processing in galactose oxidase. Proc Natl Acad Sci USA 98, 1286312865.
  • 4
    McIntire WS (1998) Newly discovered redox cofactors: possible nutritional medical and pharmacological relevance to higher animals. Annu Rev Nutr 18, 145177.
  • 5
    Mure M (2004) Tyrosine-derived quinone cofactors. Acc Chem Res 37, 131139.
  • 6
    Povolotskaia KL (1953) New form of riboflavin bound with proteins. Biokhimia 18, 638643.
  • 7
    Boukine VN (1955) Proceedings of the 3rd International Congress of Biochemistry (Brussels 1955; New York 1956), p. 260.
  • 8
    Green DE, Mii S & Kohout PM (1955) Studies on the terminal electron transport system I. Succinic dehydrogenase. J Biol Chem 217, 551568.
  • 9
    Kearney EB & Singer TP (1955) On the prosthetic group of succinic dehydrogenase. Biochim Biophys Acta 17, 596597.
  • 10
    Kearney EB (1960) Studies on succinic dehydrogenase XII. Flavin component of the mammalian enzyme. J Biol Chem 235, 865877.
  • 11
    Salach J, Walker WH, Singer TP, Ehrenberg A, Hemmerich P, Ghisla S & Hartmann U (1972) Studies on succinate dehydrogenase. Site of attachment of the covalently-bound flavin to the peptide chain. Eur J Biochem 26, 267278.
  • 12
    Walker WH, Singer TP, Ghisla S & Hemmerich P (1972) Studies on succinate dehydrogenase 8-histidyl-FAD as the active center of succinate dehydrogenase. Eur J Biochem 26, 279289.
  • 13
    Reeve CD, Carver MA & Hopper DJ (1990) Stereochemical aspects of the oxidation of 4-ethylphenol by the bacterial enzyme 4-ethylphenol methylenehydroxylase. Biochem J 269, 815819.
  • 14
    Mewies M, McIntire WS & Scrutton NS (1998) Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Prot Science 7, 720.
  • 15
    Huang CH, Lai WL, Lee MH, Chen CJ, Vasella A, Tsai YC & Liaw SH (2005) Crystal structure of glucooligosaccharide oxidase from Acremonium strictum: a novel flavinylation of 6-S-cysteinyl 8alpha-N1-histidyl FAD. J Biol Chem 280, 3883138838.
  • 16
    Alexeev I, Sultana A, Mäntsälä P, Niemi J & Schneider G (2007) Aclacinomycin oxidoreductase (AknOx) from the biosynthetic pathway of the antibiotic aclacinomycin is an unusual flavoenzyme with a dual active site. Proc Natl Acad Sci USA 104, 61706175.
  • 17
    Winkler A, Hartner F, Kutchan TM, Glieder A & Macheroux P (2006) Biochemical evidence that berberine bridge enzyme belongs to a novel family of flavoproteins containing a bi-covalently attached FAD cofactor. J Biol Chem 281, 2127621285.
  • 18
    Rand T, Qvist KB, Walter CP & Poulsen CH (2006) Characterization of the flavin association in hexose oxidase from Chondrus crispus. FEBS J 273, 26932703.
  • 19
    Li YS, Ho JY, Huang CC, Lyu SY, Lee CY, Huang YT, Wu CJ, Chan HC, Huang CJ, Hsu NS et al. (2007) A unique flavin mononucleotide-linked primary alcohol oxidase for glycopeptide A40926 maturation. J Am Chem Soc 129, 1338413385.
  • 20
    Taura F, Sirikantaramas S, Shoyama Y, Shoyama Y & Morimoto S (2007) Phytocannabinoids in Cannabis sativa: recent studies on biosynthetic enzymes. Chem Biodivers 4, 16491663.
  • 21
    Heuts DPHM, Janssen DB & Fraaije MW (2007) Changing the substrate specificity of a chitooligosaccharide oxidase from Fusarium graminearum by model-inspired site-directed mutagenesis. FEBS Lett 581, 49054909.
  • 22
    Hayashi M, Nakayama Y, Yasui M, Maeda M, Furuishi K & Unemoto T (2001) FMN is covalently linked to a threonine residue in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 488, 58.
  • 23
    Juárez O, Nilges MJ, Gillespie P, Cotton J & Barquera B (2008) Riboflavin is an active redox cofactor in the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. J Biol Chem 283, 3316233167.
  • 24
    Barquera B, Häse CC & Gennis RB (2001) Expression and mutagenesis of the NqrC subunit of the NQR respiratory Na+ pump from Vibrio cholerae with covalently attached FMN. FEBS Lett 492, 4549.
  • 25
    Fraaije MW, Van Berkel WJH, Benen JA, Visser J & Mattevi A (1998) A novel oxidoreductase family sharing a conserved FAD-binding domain. Trends Biochem Sci 23, 206207.
  • 26
    Leferink NG, Heuts DPHM, Fraaije MW & van Berkel WJH (2008) The growing VAO flavoprotein family. Arch Biochem Biophys 474, 292301.
  • 27
    Hatzinikolaou DG, Hansen OC, Macris BJ, Tingey A, Kekos D, Goodenough P & Stougaard P (1996) A new glucose oxidase from Aspergillus niger: characterization and regulation studies of enzyme and gene. Appl Microbiol Biotechnol 46, 371381.
  • 28
    Gadda G, Wels G, Pollegioni L, Zucchelli S, Ambrosius D, Pilone MS & Ghisla S (1997) Characterization of cholesterol oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum. Eur J Biochem 250, 369376.
  • 29
    Motteran L, Pilone MS, Molla G, Ghisla S & Pollegioni L (2001) Cholesterol oxidase from Brevibacterium sterolicum. J Biol Chem 276, 1802418030.
  • 30
    Kranz R, Lill R, Goldman B, Bonnard G & Merchant S (1998) Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol 29, 383396.
  • 31
    Denis L, Grossemy M, Douce R & Alban C (2002) Molecular characterization of a second copy of holocarboxylase synthetase gene (hcs2) in Arabidopsis thaliana. J Biol Chem 277, 1043510444.
  • 32
    Walsh C (1978) Enzymatic Reaction Mechanisms. WH Freeman & Company, San Francisco.
  • 33
    Walsh C (1980) Flavin coenzymes: at the crossroads of biological redox chemistry. Acc Chem Res 13, 148155.
  • 34
    Bullock FJ & Jardetzkey O (1965) An experimental demonstration of the nuclear magnetic resonance assignments in the 67-dimethylisoalloxazine nucleus. J Org Chem 30, 20562057.
  • 35
    Frost JW & Rastetter WH (1980) Biomemetic 8α functionalization of riboflavin. J Am Chem Soc 102, 71577159.
  • 36
    Wagner MA, Khanna P & Jorns MS (1999) Structure of the flavocoenzyme of two homologous amine oxidases: monomeric sarcosine oxidase and N-methyltryptophan oxidase. Biochemistry 38, 55885595.
  • 37
    Hassan-Abdallah A, Bruckner RC, Zhao G & Jorns MS (2005) Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein. Biochemistry 44, 64526462.
  • 38
    Kim J, Fuller JH, Kuusk V, Canane L, Chen ZW, Mathews FS & McIntire WS (1995) The cytochrome subunit is necessary for covalent FAD attachment to the flavoprotein subunit of p-cresol methylhydroxylase. J Biol Chem 270, 3120231209.
  • 39
    Cunane LM, Chen Z-W, McIntire WS & Mathews FS (2005) p-Cresol methylhydroxylase: alteration of the structure of the flavoprotein subunit upon its binding to the cytochrome subunit. Biochemistry 44, 29632973.
  • 40
    Efimov I & McIntire WS (2008) The redox potentials of the bound FAD analogs correlate with the covalent flavinylation rates for the flavoprotein subunit of p-cresol methylhydroxylase. In Flavins & Flavoproteins 2008. Proceedings from the 16th International Symposium Jaca Spain (FragoS, Gomez-MorenoC & MedinaM, eds), pp. 5762. Prensas Universitarias de Zaragossa, Zaragossa.
  • 41
    Brandsch R & Bichler V (1987) Covalent flavinylation of 6-hydroxy-d-nicotine oxidase involves an energy-requiring process. FEBS Lett 224, 121124.
  • 42
    Brandsch R, Bichler V & Krauss B (1989) Binding of FAD to 6-hydroxy-d-nicotine oxidase apoenzyme prevents degradation of the holoenzyme. Biochem J 258, 187192.
  • 43
    Mauch L, Bichler V & Brandsch R (1989) Site-directed mutagenesis of the FAD-binding histidine of 6-hydroxy-d-nicotine oxidase. Consequences on flavinylation and enzyme activity. FEBS Lett 257, 8688.
  • 44
    Brandsch R & Bichler V (1991) Autoflavinylation of apo 6-hydroxy-d-nicotine oxidase. J Biol Chem 266, 1905619062.
  • 45
    Koetter JWA & Schulz GE (2005) Crystal structure of 6-hydroxy-d-nicotine oxidase from Arthrobacter nicotinovorans. J Mol Biol 352, 418428.
  • 46
    Möhler H, Brühmüller M & Decker K (1972) Covalently bound flavin in D-6-hydroxynicotine oxidase from Arthrobacte  oxidans. Identification of the 8-(N-3-histidyl)-riboflavin-linkage between FAD and apoenzyme. Eur J Biochem 29, 152155.
  • 47
    Fraaije MW, Van den Heuvel RHH, Van Berkel WJH & Mattevi A (2000) Structural analysis of flavinylation in vanillyl-alcohol oxidase. J Biol Chem 275, 3865438658.
  • 48
    Jin J, Mazon H, van den Heuvel RHH, Heck AJ, Janssen DB & Fraaije MW (2008) Covalent flavinylation of vanillyl-alcohol oxidase is an autocatalytic process. FEBS J 275, 51915200.
  • 49
    Brizio C, Brandsch R, Douka M, Wait R & Barile M (2008) The purified recombinant precursor of rat mitochondrial dimethylglycine dehydrogenase binds FAD via an autocatalytic reaction. Int J Biol Macromol 42, 455462.
  • 50
    Scrutton NS, Packman LC, Mathews FS, Rohlfs RJ & Hille R (1994) Assembly of redox centers in the trimethylamine dehydrogenase of bacterium W3A1: properties of the wild-type enzyme and a C30A mutant expressed from a cloned gene in Escherichia coli. J Biol Chem 269, 1394213950.
  • 51
    Trickey P, Wagner MA, Jorns MS & Mathews FS (1999) Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Structure 7, 331345.
  • 52
    Efimov I, Cronin CN, Bergmann DJ, Kuusk V & McIntire WS (2004) Insight into covalent flavinylation and catalysis from redox spectral and kinetic analysis of the R474K mutant of the flavoprotein subunit of p-cresol methylhydroxylase. Biochemistry 43, 61386148.
  • 53
    Van den Heuvel RHH, Fraaije MW, Mattevi A & van Berkel WJH (2000) Asp-170 is crucial for the redox properties of vanillyl-alcohol oxidase. J Biol Chem 275, 1479914808.
  • 54
    Ferri S, Miura S, Sakaguchi A, Ishimura F, Tsugawa W & Sode K (2004) Cloning and expression of fructosyl-amine oxidase from marine yeast Pichia species N1-1. Biotechnology (NY) 6, 625632.
  • 55
    Liaw S, Lee DY, Chow LP, Lau GX & Su SN (2001) Structural characterization of the 60-kDa bermuda grass pollen isoallergens, a covalent flavoprotein. Biochem Biophys Res Commun 280, 738743.
  • 56
    Otto A, Stähle I, Klein R, Berg PA, Pankuweit S & Brandsch R (1998) Anti-mitochondrial antibodies in patients with dilated cardiomyopathy (anti-M7) are directed against flavoenzymes with covalently bound FAD. Clin Exp Immunol 111, 541547.
  • 57
    Williamson G & Edmondson DE (1985) Effect of pH on oxidation–reduction potentials of 8a-N-imidazole-substituted flavins. Biochemistry 24, 77907797.
  • 58
    Ghisla S, Kenney WC, Knappe WR, McIntire WS & Singer TP (1980) Chemical synthesis and some properties of 6-substituted flavins. Biochemistry 19, 25372544.
  • 59
    McIntire WS, Edmondson DE, Hopper DJ & Singer TP (1981) 8α-(O-Tyrosyl) flavin adenine dinucleotide: the prosthetic group of bacterial p-cresol methylhydroxylase. Biochemistry 20, 30683075.
  • 60
    Edmondson DE & De Francesco R (1991) Structure synthesis and physical properties of covalently bound flavins and 6- and 8-hydroxyflavins. In Chemistry and Biochemistry of Flavoenzymes (MüllerF, ed), pp. 73103. CRC Press, Boca Raton, FL.
  • 61
    Edmondson DE & Ghisla S (1999) Electronic effects of 7 and 8 ring substituents as predictors of flavin oxidation–reduction potentials. In Flavins and Flavoproteins (GhislaS, KroneckP, MacherouxP & SundH, eds), pp. 7176. Rudolf Weber Agency for Scientific Publications, Berlin.
  • 62
    Fraaije MW, Van den Heuvel RHH, Van Berkel WJH & Mattevi A (1999) Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase. J Biol Chem 274, 3551435520.
  • 63
    Efimov I, Cronin CN & McIntire WS (2001) Effects of non-covalent and covalent FAD binding on the redox and catalytic properties of p-cresol methylhydroxylase. Biochemistry 40, 21552166.
  • 64
    Thiemer B, Andreesen JR & Schräder T (2001) The NADH-dependent reductase of a putative multicomponent tetrahydrofuran mono-oxygenase contains a covalently bound FAD. Eur J Biochem 268, 37743782.
  • 65
    Lim L, Molla G, Guinn N, Ghisla S, Pollegioni L & Vrielink A (2006) Structural and kinetic analyses of the H121A mutant of cholesterol oxidase. Biochem J 400, 1322.
  • 66
    Kujawa M, Ebner H, Leitner C, Hallberg BM, Prongjit M, Sucharitakul J, Ludwig R, Rudsander U, Peterbauer C, Chaiyen P et al. (2006) Structural basis for substrate binding and regioselective oxidation of monosaccharides at C3 by pyranose-2-oxidase. J Biol Chem 281, 3510435115.
  • 67
    Hassan-Abdallah A, Zhao G & Jorns MS (2006) Role of the covalent flavin linkage in monomeric sarcosine oxidase. Biochemistry 45, 94549462.
  • 68
    Winkler A, Kutchan TM & Macheroux P (2007) 6-S-cysteinylation of bi-covalently attached FAD in berberine bridge enzyme tunes the redox potential for optimal activity. J Biol Chem 282, 2443724443.
  • 69
    Winkler A, Lyskowski A, Riedl S, Puhl M, Kutchan TM, Macheroux P & Gruber K (2008) A concerted mechanism for berberine bridge enzyme. Nat Chem Biol 4, 739741.
  • 70
    Heuts DPHM, Winter RT, Damsma GE, Janssen DB & Fraaije MW (2008) The role of double covalent flavinylation in chitooligosaccharide oxidase. Biochem J 413, 175183.
  • 71
    Heuts DPHM, Van Hellemond EW, Janssen DB & Fraaije MW (2007) Discovery, characterization and kinetic analysis of an alditol oxidase from Streptomyces coelicolor. J Biol Chem 282, 2028320291.
  • 72
    Nandigama RK & Edmondson DE (2000) Influence of FAD structure on its binding and activity with the C406A mutant of recombinant human liver monoamine oxidase A. J Biol Chem 275, 2052720532.
  • 73
    Van Hellemond EW, Mazon H, Heck AJ, van den Heuvel RHH, Heuts DPHM, Janssen DB & Fraaije MW (2008) ADP competes with FAD binding in putrescine oxidase. J Biol Chem 283, 2825928264.
  • 74
    Caldinelli L, Iametti S, Barbiroli A, Bonomi F, Fessas D, Molla G, Pilone MS & Pollegioni L (2005) Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin. J Biol Chem 280, 2257222581.
  • 75
    Eschenbrenner M, Chlumsky LJ, Khanna P, Strasser F & Jorns MS (2001) Organization of the multiple coenzymes and subunits and role of the covalent flavin link in the complex heterotetrameric sarcosine oxidase. Biochemistry 40, 53525367.
  • 76
    Cecchini G (2003) Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72, 77109.
  • 77
    Steenkamp DJ & Mallinson J (1976) Trimethylamine dehydrogenase from a methylotrophic bacterium I. Isolation and steady-state kinetics. Biochim Biophys Acta 429, 705719.
  • 78
    Huang L, Scrutton NS & Hille RJ (1996) Reaction of the C30A mutant of trimethylamine dehydrogenase with diethylmethylamine. J Biol Chem 271, 1340113406.
  • 79
    Lu X, Nikolic D, Mitchell DJ, Van Breemen RB, Mersfelder JA, Hille R & Silverman RB (2003) A mechanism for substrate-induced formation of 6-hydroxyflavin mononucleotide catalyzed by C30A trimethylamine dehydrogenase. Bioorg Med Chem Lett 13, 41294132.
  • 80
    Massey V & Husain H (1978) Reversible resolution of flavoproteins into apoproteins and free flavins. Methods Enzymol 53, 429437.
  • 81
    Hefti MH, Vervoort J & van Berkel WJ (2003) Deflavination and reconstitution of flavoproteins. Eur J Biochem 270, 42274242.
  • 82
    Ghisla S & Massey V (1986) New flavins for old: artificial flavins as active site probes of flavoproteins. Biochem J 239, 112.
  • 83
    Efimov I & McIntire WS (2004) A study of the spectral and redox properties and covalent flavinylation of the flavoprotein component of p-cresol methylhydroxylase reconstituted with FAD analogues. Biochemistry 43, 1053210546.
  • 84
    Efimov I & McIntire WS (2005) Relationship between charge-transfer interactions, redox potentials and catalysis for different forms of the flavoprotein component of p-cresol methylhydroxylase. J Am Chem Soc 127, 732741.
  • 85
    Moore EG, Cardemil E & Massey V (1978) Production of a covalent flavin linkage in lipoamide dehydrogenase. Reaction with 8-Cl-FAD. J Biol Chem 253, 64136422.
  • 86
    Massey V & Hemmerich P (1980) Active-site probes of flavoproteins. Biochem Soc Trans 8, 246257.
  • 87
    Macheroux P, Plattner HJ, Romaguera A & Diekmann H (1993) FAD and substrate analogs as probes for lysine N6-hydroxylase from Escherichia coli EN 222. Eur J Biochem 213, 9951002.
  • 88
    Raibekas AA, Fukui K & Massey V (1999) Design and properties of human d-amino acid oxidase with covalently attached flavin. Proc Natl Acad Sci USA 97, 30893093.
  • 89
    Negri A, Buckmann AF, Tedeschi G, Stocker A, Ceciliani F, Treu C & Ronchi S (1999) Covalent flavinylation of l-aspartate oxidase from Escherichia coli using N6-(6-carboxy-hexyl)-FAD succinimidoester. J Prot Chem 18, 671676.
  • 90
    DeLano WL (2002) The PyMOL molecular graphics system. .
  • 91
    Byron CM, Stankovich MT, Husain M & Davidson VL (1989) Unusual redox properties of electron-transfer flavoprotein from Methylophilus methylotrophus. Biochemistry 28, 85828587.
  • 92
    Pace C & Stankovich M (1986) Oxidation–reduction properties of glycolate oxidase. Biochemistry 25, 25162522.
  • 93
    Husain M, Stankovich MT & Fox BG (1984) Measurement of the oxidation–reduction potentials for one-electron and two-electron reduction of electron-transfer flavoprotein from pig liver. Biochem J 219, 10431047.
  • 94
    Meyer TE, Bartsch RG, Caffrey MS & Cusanovich MA (1991) Redox potentials of flavocytochromes c from the phototrophic bacteria Chromatium vinosum and Chlorobium thiosulfatophilum. Arch Biochem Biophys 287, 128134.
  • 95
    Kay CJ & Lippay EW (1992) Mutation of the heme-binding crevice of flavocytochrome b2 from Saccharomyces cerevisiae: altered heme potential and absence of redox cooperativity between heme and FMN centers. Biochemistry 31, 1137611382.
  • 96
    Gomes CM, Silva G, Oliveira S, LeGall J, Liu MY, Xavier AV, Rodrigues-Pousada C & Teixeira M (1997) Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem 272, 2250222508.
  • 97
    Vinod MP, Bellur P & Becker DF (2002) Electrochemical and functional characterization of the proline dehydrogenase domain of the PutA flavoprotein from Escherichia coli. Biochemistry 41, 65256532.
  • 98
    Sabaj KM & Stankovich MT (1996) Exploring the redox properties of MCAD bound to two analogs acetoacetyl-CoA and hexadienoyl-CoA. In Flavins and Flavoproteins 1996 (StevensonKJ, MasseyV & WillamsCHJr eds), pp. 645648. University of Calgary Press, Calgary, AB, Canada.
  • 99
    Chaiyen P, Brissette P, Ballou DP & Massey V (1997) Thermodynamics and reduction kinetics properties of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase. Biochemistry 36, 26122621.
  • 100
    Tegoni M, Silvestrini MC, Guigliarelli B, Asso M, Brunori M & Bertrand P (1998) Temperature-jump and potentiometric studies on recombinant wild type and Y143F and Y254F mutants of Saccharomycescerevisiae flavocytochrome b2: role of the driving force in intramolecular electron transfer kinetics. Biochemistry 37, 1276112771.
  • 101
    Wille G, Ritter M, Weiss MS, König S, Mäntele W & Hübner G (2005) The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR kinetic and crystallographic studies on the enzyme variant V265A. Biochemistry 44, 50865094.
  • 102
    Negri A, Tedeschi G, Ceciliani F & Ronchi S (1999) Purification of beef kidney d-aspartate oxidase overexpressed in Escherichia coli and characterization of its redox potentials and oxidative activity towards agonists and antagonists of excitatory amino acid receptors. Biochim Biophys Acta 1431, 212222.
  • 103
    Van den Berghe-Snorek S & Stankovich MT (1985) Thermodynamic control of D-amino acid oxidase by benzoate binding. J Biol Chem 260, 33733379.
  • 104
    Mancini-Samuelson GJ, Kieweg V, Sabaj KM, Ghisla S & Stankovich MT (1998) Redox properties of human medium-chain acyl-CoA dehydrogenase modulation by charged active-site amino acid residues. Biochemistry 37, 1460514612.
  • 105
    Parsonage D, Luba J, Mallett TC & Claiborne A (1998) The soluble alpha-glycerophosphate oxidase from Enterococcus casseliflavus. Sequence homology with the membrane-associated dehydrogenase and kinetic analysis of the recombinant enzyme. J Biol Chem 273, 2381223822.
  • 106
    Williamson G, Edmondson DE & Müller F (1988) Oxidation–reduction potential studies on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Biochim Biophys Acta 953, 258262.
  • 107
    Krishnan N & Becker DF (2005) Characterization of a bifunctional PutA homologue from Bradyrhizobiumjaponicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor. Biochemistry 44, 91309139.
  • 108
    Stankovich M & Fox B (1983) Redox potentials of the flavoprotein lactate oxidase. Biochemistry 22, 44664472.
  • 109
    Turner KL, Doherty MK, Heering HA, Armstrong FA, Reid GA & Chapman SK (1999) Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIM. Biochemistry 38, 33023309.
  • 110
    Tedeschi G, Chen S & Massey V (1995) DT-diaphorase: redox potential steady-state and rapid reaction studies. J Biol Chem 270, 11981204.
  • 111
    Panda SP, Gao YT, Roman LJ, Martásek P, Salerno JC & Masters BSS (2006) The role of a conserved serine residue within hydrogen bonding distance of FAD in redox properties and the modulation of catalysis by Ca2+/calmodulin of constitutive nitric-oxide synthases. J Biol Chem 281, 3424634257.
  • 112
    Müh U, Cinkaya I, Albracht SP & Buckel W (1996) 4-Hydroxybutyryl-CoA dehydratase from Clostridium aminobutyricum: characterization of FAD and iron–sulfur clusters involved in an overall non-redox reaction. Biochemistry 35, 1171011718.
  • 113
    Navarro F, Martín-Figueroa E, Candau P & Florencio FJ (2000) Ferredoxin-dependent iron–sulfur flavoprotein glutamate synthase (GlsF) from the Cyanobacterium Synechocystis sp. PCC 6803: expression and assembly in Escherichia coli. Arch Biochem Biophys 379, 267276.
  • 114
    Lund J & Dalton H (1985) Further characterisation of the FAD and Fe2S2 redox centres of component C of the NADH: acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur J Biochem 147, 291296.
  • 115
    Burns KD, Pieper PA, Liu HW & Stankovich MT (1996) Studies of the redox properties of CDP-6-deoxy-l-threo-d-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-l-threo-d-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose. Biochemistry 35, 78797889.
  • 116
    Tedeschi G, Zetta L, Negri A, Mortarino M, Ceciliani F & Ronchi S (1997) Redox potentials and quinone reductase activity of l-aspartate oxidase from Escherichia coli. Biochemistry 36, 1622116230.
  • 117
    Martínez-Júlvez M, Nogués I, Faro M, Hurley JK, Brodie TB, Mayoral T, Sanz-Aparicio J, Hermoso JA, Stankovich MT, Medina M et al. (2001) Role of a cluster of hydrophobic residues near the FAD cofactor in Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal complex formation and electron transfer to ferredoxin. J Biol Chem 276, 2749827510.
  • 118
    Einarsdottir GH, Stankovich MT, Powlowski J, Ballou DP & Massey V (1989) Regulation of oxidation–reduction potentials of anthranilate hydroxylase from Trichosporon cutaneum by substrate and effector binding. Biochemistry 28, 41614168.
  • 119
    Stewart RC & Massey V (1985) Potentiometric studies of native and flavin-substituted old yellow enzyme. J Biol Chem 260, 1363913647.
  • 120
    Coves J, Zeghouf M, Macherel D, Guigliarelli B, Asso M & Fontecave M (1997) Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli. Biochemistry 36, 59215928.
  • 121
    Veine DM, Arscott LD & Williams CH Jr (1998) Redox potentials for yeast Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis. Biochemistry 37, 1557515582.
  • 122
    Ludwig ML, Pattridge KA, Metzger AL & Dixon MM (1997) Control of oxidation–reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Biochemistry 36, 12591280.
  • 123
    Porras AG & Palmer G (1982) The room temperature potentiometry of xanthine oxidase pH-dependent redox behavior of the flavin molybdenum and iron–sulfur centers. J Biol Chem 257, 1161711626.
  • 124
    Davis CA & Barber MJ (2004) Cytochrome b5 oxidoreductase: expression and characterization of the original familial ideopathic methemoglobinemia mutations E255- and G291D. Arch Biochem Biophys 425, 123132.
  • 125
    Shaw JP & Harayama S (1992) Purification and characterisation of the NADH: acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Eur J Biochem 209, 5161.
  • 126
    Klopprogge K & Schmitz RA (1999) NifL of Klebsiella pneumoniae: redox characterization in relation to the nitrogen source. Biochim Biophys Acta 1431, 462470.
  • 127
    Becker DF, Leartsakulpanich U, Surerus KK, Ferry JG & Ragsdale SW (1998) Electrochemical and spectroscopic properties of the iron–sulfur flavoprotein from Methanosarcina thermophila. J Biol Chem 273, 2646226469.
  • 128
    Kay CJ, Barber MJ, Notton BA & Solomonson LP (1989) Oxidation–reduction midpoint potentials of the flavin haem and Mo-pterin centres in spinach (Spinacia oleracea L.) nitrate reductase. Biochem J 263, 285287.
  • 129
    Ukaegbu UE, Henery S & Rosenzweig AC (2006) Biochemical characterization of MmoS, a sensor protein involved in copper-dependent regulation of soluble methane monooxygenase. Biochemistry 45, 1019110198.
  • 130
    Hunt J, Massey V, Dunham WR & Sands RH (1993) Redox potentials of milk xanthine dehydrogenase. Room temperature measurement of the FAD and 2Fe/2S center potentials.. J Biol Chem 268, 1868518691.
  • 131
    Pueyo JJ, Gomez-Moreno C & Mayhew SG (1991) Oxidation–reduction potentials of ferredoxin-NADP+ reductase and flavodoxin from Anabaena PCC 7119 and their electrostatic and covalent complexes. Eur J Biochem 202, 10651071.
  • 132
    Gadda G & Fitzpatrick PF (1998) Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum. Biochemistry 37, 61546164.
  • 133
    Bandeiras TM, Salgueiro CA, Huber H, Gomes CM & Teixeira M (2003) The respiratory chain of the thermophilic archaeon Sulfolobus metallicus: studies on the type-II NADH dehydrogenase. Biochim Biophys Acta 1557, 1319.
  • 134
    Gomes CM, Bandeiras TM & Teixeira M (2001) A new type-II NADH dehydrogenase from the archaeon Acidianus ambivalens: characterization and in vitro reconstitution of the respiratory chain. J Bioenerg Biomembr 33, 18.
  • 135
    Gomez-Moreno C, Choy M & Edmondson DE (1979) Purification and properties of the bacterial flavoprotein: thiamin dehydrogenase. J Biol Chem 254, 76307635.
  • 136
    Newton-Vinson P & Edmondson DE (1999) High-level expression structural kinetic and redox characterization of recombinant human liver monoamine oxidase B. In Flavins and Flavoproteins 1999 (GhislaS, KroneckP, MacherouxP & SundH eds), pp. 431434. Rudolf Weber Agency for Scientific Publications, Berlin.
  • 137
    Frébortová J, Fraaije MW, Galuszka P, Sebela M, Pec P, Hrbác J, Novák O, Bilyeu KD, English JT & Frébort I (2004) Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors. Biochem J 380, 121130.
  • 138
    Wu X, Palfey BA, Mossine VV & Monnier VM (2001) Kinetic studies: mechanism and substrate specificity of amadoriase I from Aspergillus sp. Biochemistry 40, 1288612895.
  • 139
    Gutman M, Bonomi F, Pagani S, Cerletti P & Kroneck P (1980) Modulation of the flavin redox potential as mode of regulation of succinate dehydrogenase activity. Biochim Biophys Acta 591, 400408.
  • 140
    Huang CH, Winkler A, Chen CL, Lai WL, Tsai YC, Macheroux P & Liaw SH (2008) Functional roles of the 6-S-cysteinyl 8alpha-N1-histidyl FAD in glucooligosaccharide oxidase from Acremonium strictum. J Biol Chem 283, 3099030996.
  • 141
    Coulombe R, Yue KQ, Ghisla S & Vrielink A (2001) Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. J Biol Chem 276, 3043530441.
  • 142
    Forneris F, Heuts DPHM, Delvecchio M, Rovida S, Fraaije MW & Mattevi A (2008) Structural analysis of the catalytic mechanism and stereoselectivity in Streptomyces coelicolor alditol oxidase. Biochemistry 47, 978985.
  • 143
    Malito E, Coda A, Bilyeu KD, Fraaije MW & Mattevi A (2004) Structures of Michaelis and product complexes of plant cytokinin dehydrogenase: implications for flavoenzyme catalysis. J Mol Biol 341, 12371249.
  • 144
    Jin J, Mazon H, van den Heuvel RHH, Janssen DB & Fraaije MW (2007) Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS J 274, 23112321.
  • 145
    Kenney WC, Edmondson DE, Singer TP, Nakagawa H, Asano A & Sato R (1976) Identification of the covalently bound flavin of l-gulono-gamma-lactone oxidase. Biochem Biophys Res Commun 71, 11941200.
  • 146
    Shimizu M, Murakawa S & Takahashi T (1977) The covalently bound flavin prosthetic group of d-gluconolactone dehydrogenase of Penicillium cyaneo-fulvum. Agric Biol Chem 41, 21072108.
  • 147
    Kenney WC, Edmondson DE, Singer TP, Nishikimi M, Noguchi E & Yagi K (1979) Identification of the covalently-bound flavin of l-galactonolactone oxidase from yeast. FEBS Lett 97, 4042.
  • 148
    Huh WK, Kim ST, Yang KS, Seok YJ, Hah YC & Kang SO (1994) Characterisation of d-arabinono-14-lactone oxidase from Candida albicans ATCC 10231. Eur J Biochem 225, 10731079.
  • 149
    Hiraga K, Kitazawa M, Kaneko N & Oda K (1997) Isolation and some properties of sorbitol oxidase from Streptomyces sp H-7775. Biosci Biotechnol Biochem 61, 16991704.
  • 150
    Yamashita M, Omura H, Okamoto E, Furuya Y, Yabuuchi M, Fukahi K & Murooka Y (2000) Isolation characterization and molecular cloning of a thermostable xylitol oxidase from Streptomyces sp IKD472. J Biosci Bioeng 89, 350360.
  • 151
    Carter CJ & Thornburg RW (2004) Tobacco nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiol 134, 460469.
  • 152
    Decker KF (1991) Covalent flavoproteins. In Chemistry and Biochemistry of Flavoenzymes, vol II (MüllerF ed), pp. 343375. CRC Press, Boca Raton, FL.
  • 153
    Halada P, Leitner C, Sedmera P, Haltrich D & Volc J (2003) Identification of the covalent flavin adenine dinucleotide-binding region in pyranose 2-oxidase from Trametes multicolour. Anal Biochem 314, 235242.
  • 154
    Kujawa M, Volc J, Halada P, Sedmera P, Divne C, Sygmund C, Leitner C, Peterbauer C & Haltrich D (2007) Properties of pyranose dehydrogenase purified from the litter-degrading fungus Agaricus xanthoderma. FEBS J 274, 879894.
  • 155
    Leys D, Basran J & Scrutton NS (2003) Channelling and formation of ‘active’ formaldehyde in dimethylglycine oxidase. EMBO J 22, 40384048.
  • 156
    Chiribau CB, Sandu C, Fraaije M, Schiltz E & Brandsch R (2004) A novel gamma-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobacco alkaloid nicotine by Arthrobacter nicotinovorans pAO1. Eur J Biochem 271, 46774684.
  • 157
    Mathews FS, Chen ZW, Bellamy HD & McIntire WS (1991) Three-dimensional structure of p-cresol methylhydroxylase (flavocytochrome c) from Pseudomonas putida at 30-A resolution. Biochemistry 30, 238247.
  • 158
    Edmondson DE, Binda C & Mattevi A (2004) The FAD binding sites of human monoamine oxidases A and B. Neurotoxicology 25, 6372.
  • 159
    Zhou BP, Lewis DA, Kwan SW & Abell CW (1995) Flavinylation of monoamine oxidase B. J Biol Chem 270, 2365323660.
  • 160
    Ilari A, Bonamore A, Franceschini S, Fiorillo A, Boffi A & Colotti G (2008) The X-ray structure of N-methyltryptophan oxidase reveals the structural determinants of substrate specificity. Proteins 71, 20652075.
  • 161
    Goyer A, Johnson TL, Olsen LJ, Collakova E, Shachar-Hill Y, Rhodes D & Hanson AD (2004) Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J Biol Chem 279, 1694716953.
  • 162
    Carrell CJ, Bruckner RC, Venci D, Zhao G, Jorns MS & Mathews FS (2007) NikD an unusual amino acid oxidase essential for nikkomycin biosynthesis: structures of closed and open forms at 115 and 190 A resolution. Structure 15, 928941.
  • 163
    Chen ZW, Koh M, Van Driessche G, Van Beeumen JJ, Bartsch RG, Meyer TE, Cusanovich MA & Mathews FS (1994) The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Science 266, 430432.
  • 164
    Van Driessche G, Koh M, Chen ZW, Mathews FS, Meyer TE, Bartsch RG, Cusanovich MA & Van Beeumen JJ (1996) Covalent structure of the flavoprotein subunit of the flavocytochrome c: sulfide dehydrogenase from the purple phototrophic bacterium Chromatium vinosum. Protein Sci 5, 17531764.
  • 165
    Nandy A, Petersen A, Wald M, Suck R, Kahlert H, Weber B, Becker WM, Cromwell O & Fiebig H (2005) Primary structure recombinant expression and molecular characterization of Phl p4, a major allergen of timothy grass (Phleum pratense). Biochem Biophys Res Commun 337, 563570.
  • 166
    Willie A, Edmondson DE & Jorns MS (1996) Sarcosine oxidase contains a novel covalently bound FMN. Biochemistry 35, 52925299.
  • 167
    Bandeiras TM, Salgueiro C, Kletzin A, Gomes CM & Teixeira M (2002) Acidianus ambivalens type-II NADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN. FEBS Lett 531, 273277.
  • 168
    Steenkamp DJ, McIntire W & Kenney WC (1978) Structure of the covalently bound coenzyme of trimethylamine dehydrogenase. Evidence for a 6-substituted flavin. J Biol Chem 253, 28182824.
  • 169
    Yang CC, Packman LC & Scrutton NS (1995) The primary structure of Hyphomicrobium X dimethylamine dehydrogenase. Relationship to trimethylamine dehydrogenase and implications for substrate recognition. Eur J Biochem 232, 264271.
  • 170
    Fujieda N, Tsuse N, Satoh A, Ikeda T & Kano K (2005) Production of completely flavinylated histamine dehydrogenase, unique covalently bound flavin, and iron–sulfur cluster-containing enzyme of Nocardioides simplex in Escherichia coli, and its properties. Biosci Biotechnol Biochem 69, 24592462.