Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA


  • Note
    The atomic coordinates and structure factors of BSX·TAXI-IA (PDB code 2B42) and BSX·rTAXI-IIA (PDB code 3HD8) are deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ, USA (

C. M. Courtin, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20 - bus 2463, B-3001 Leuven, Belgium
Fax: +32 16 321997
Tel: +32 16 321917


Triticum aestivum xylanase inhibitor (TAXI)-type inhibitors are active against microbial xylanases from glycoside hydrolase family 11, but the inhibition strength and the specificity towards different xylanases differ between TAXI isoforms. Mutational and biochemical analyses of TAXI-I, TAXI-IIA and Bacillus subtilis xylanase A showed that inhibition strength and specificity depend on the identity of only a few key residues of inhibitor and xylanase [Fierens K et al. (2005) FEBS J272, 5872–5882; Raedschelders G et al. (2005) Biochem Biophys Res Commun335, 512–522; Sørensen JF & Sibbesen O (2006) Protein Eng Des Sel19, 205–210; Bourgois TM et al. (2007) J Biotechnol130, 95–105]. Crystallographic analysis of the structures of TAXI-IA and TAXI-IIA in complex with glycoside hydrolase family 11 B. subtilis xylanase A now provides a substantial explanation for these observations and a detailed insight into the structural determinants for inhibition strength and specificity. Structures of the xylanase–inhibitor complexes show that inhibition is established by loop interactions with active-site residues and substrate-mimicking contacts in the binding subsites. The interaction of residues Leu292 of TAXI-IA and Pro294 of TAXI-IIA with the −2 glycon subsite of the xylanase is shown to be critical for both inhibition strength and specificity. Also, detailed analysis of the interaction interfaces of the complexes illustrates that the inhibition strength of TAXI is related to the presence of an aspartate or asparagine residue adjacent to the acid/base catalyst of the xylanase, and therefore to the pH optimum of the xylanase. The lower the pH optimum of the xylanase, the stronger will be the interaction between enzyme and inhibitor, and the stronger the resulting inhibition.

Structured digital abstract