• 1
    De Colibus L & Mattevi A (2006) New frontiers in structural flavoenzymology. Curr Opin Struct Biol 16, 722728.
  • 2
    Joosten V & van Berkel WJ (2007) Flavoenzymes. Curr Opin Chem Biol 11, 195202.
  • 3
    Gutierrez A, Grunau A, Paine M, Munro AW, Wolf CR, Roberts GC & Scrutton NS (2003) Electron transfer in human cytochrome P450 reductase. Biochem Soc Trans 31, 497501.
  • 4
    Girvan HM, Waltham TN, Neeli R, Collins HF, McLean KJ, Scrutton NS, Leys D & Munro AW (2006) Flavocytochrome P450 BM3 and the origin of CYP102 fusion species. Biochem Soc Trans 34, 11731177.
  • 5
    Murataliev MB, Feyereisen R & Walker FA (2004) Electron transfer by diflavin reductases. Biochim Biophys Acta 1698, 126.
  • 6
    Alderton WK, Cooper CE & Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357, 593615.
  • 7
    Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411, 217230.
  • 8
    Gorren ACF & Mayer B (2007) Nitric-oxide synthase: a cytochrome P450 family foster child. Biochim Biophys Acta Gen Subj 1770, 432445.
  • 9
    Li H & Poulos TL (2005) Structure–function studies on nitric oxide synthases. J Inorg Biochem 99, 293305.
  • 10
    Roman LJ, Martasek P & Masters BS (2002) Intrinsic and extrinsic modulation of nitric oxide synthase activity. Chem Rev 102, 11791190.
  • 11
    Miller RT, Martasek P, Omura T & Masters BSS (1999) Rapid kinetic studies of electron transfer in the three isoforms of nitric oxide synthase. Biochem Biophys Res Commun 265, 184188.
  • 12
    Santolini J, Adak S, Curran CM & Stuehr DJ (2001) A kinetic simulation model that describes catalysis and regulation in nitric-oxide synthase. J Biol Chem 276, 12331243.
  • 13
    Santolini J, Meade AL & Stuehr DJ (2001) Differences in three kinetic parameters underpin the unique catalytic profiles of nitric-oxide synthases I, II, and III. J Biol Chem 276, 4888748898.
  • 14
    Masters BS, McMillan K, Sheta EA, Nishimura JS, Roman LJ & Martasek P (1996) Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates l-arginine to produce NO. as a cellular signal. FASEB J 10, 552558.
  • 15
    Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78, 927930.
  • 16
    Wei CC, Crane BR & Stuehr DJ (2003) Tetrahydrobiopterin radical enzymology. Chem Rev 103, 23652383.
  • 17
    Raman CS, Li H, Martasek P, Kral V, Masters BS & Poulos TL (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95, 939950.
  • 18
    Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ & Tainer JA (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279, 21212126.
  • 19
    Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, Prongay AJ, Reichert P, Lundell DJ, Narula SK et al. (1999) Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol 6, 233242.
  • 20
    Zhang J, Martasek P, Paschke R, Shea T, Masters BSS & Kim JJ (2001) Crystal structure of the FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase. J Biol Chem 276, 3750637513.
  • 21
    Aoyagi M, Arvai AS, Tainer JA & Getzoff ED (2003) Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J 22, 766775.
  • 22
    Garcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gachhui R, Stuehr DJ, Tainer JA & Getzoff ED (2004) Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase. J Biol Chem 279, 3791837927.
  • 23
    Wei CC, Wang ZQ, Tejero J, Yang YP, Hemann C, Hille R & Stuehr DJ (2008) Catalytic reduction of a tetrahydrobiopterin radical within nitric-oxide synthase. J Biol Chem 283, 1173411742.
  • 24
    Crane BR, Arvai AS, Gachhui R, Wu C, Ghosh DK, Getzoff ED, Stuehr DJ & Tainer JA (1997) The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science 278, 425431.
  • 25
    Munro AW, Girvan HM & McLean KJ (2007) Cytochrome P450 – redox partner fusion enzymes. Biochim Biophys Acta 1770, 345359.
  • 26
    Porter TD (1991) An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem Sci 16, 154158.
  • 27
    Salerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SM, Martasek P, Roman LJ, Masters BS, Jones CL et al. (1997) An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem 272, 2976929777.
  • 28
    Daff S, Sagami I & Shimizu T (1999) The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer. J Biol Chem 274, 3058930595.
  • 29
    Lane P & Gross SS (2000) The autoinhibitory control element and calmodulin conspire to provide physiological modulation of endothelial and neuronal nitric oxide synthase activity. Acta Physiol Scand 168, 5363.
  • 30
    Montgomery HJ, Romanov V & Guillemette JG (2000) Removal of a putative inhibitory element reduces the calcium-dependent calmodulin activation of neuronal nitric-oxide synthase. J Biol Chem 275, 50525058.
  • 31
    Roman LJ, Miller RT, de La Garza MA, Kim JJ & Masters BSS (2000) The C-terminus of mouse macrophage inducible nitric-oxide synthase attenuates electron flow through the flavin domain. J Biol Chem 275, 2191421919.
  • 32
    Roman LJ, Martasek P, Miller RT, Harris DE, de La Garza MA, Shea TM, Kim JJ & Masters BS (2000) The C termini of constitutive nitric-oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin. J Biol Chem 275, 2922529232.
  • 33
    Tiso M, Tejero J, Panda K, Aulak KS & Stuehr DJ (2007) Versatile regulation of neuronal nitric oxide synthase by specific regions of its C-terminal tail. Biochemistry 46, 1441814428.
  • 34
    Knudsen GM, Nishida CR, Mooney SD & Ortiz de Montellano PR (2003) Nitric-oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin-dependent activity. J Biol Chem 278, 3181431824.
  • 35
    Jones RJ, Smith SM, Gao YT, DeMay BS, Mann KJ, Salerno KM & Salerno JC (2004) The function of the small insertion in the hinge subdomain in the control of constitutive mammalian nitric-oxide synthases. J Biol Chem 279, 3687636883.
  • 36
    Abu-Soud HM, Yoho LL & Stuehr DJ (1994) Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. Activation of intra- and interdomain electron transfer. J Biol Chem 269, 3204732050.
  • 37
    Kobayashi K, Tagawa S, Daff S, Sagami I & Shimizu T (2001) Rapid calmodulin-dependent interdomain electron transfer in neuronal nitric-oxide synthase measured by pulse radiolysis. J Biol Chem 276, 3986439871.
  • 38
    Sagami I, Daff S & Shimizu T (2001) Intra-subunit and inter-subunit electron transfer in neuronal nitric-oxide synthase: effect of calmodulin on heterodimer catalysis. J Biol Chem 276, 3003630042.
  • 39
    Panda K, Ghosh S & Stuehr DJ (2001) Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer. J Biol Chem 276, 2334923356.
  • 40
    Beaumont E, Lambry JC, Blanchard-Desce M, Martasek P, Panda SP, van Faassen EE, Brochon JC, Deprez E & Slama-Schwok A (2009) NO formation by neuronal NO-synthase can be controlled by ultrafast electron injection from a nanotrigger. ChemBioChem 10, 690701.
  • 41
    Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano PR & Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443, 285289.
  • 42
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R & Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601605.
  • 43
    Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A & Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597601.
  • 44
    Hayashi Y, Nishio M, Naito Y, Yokokura H, Nimura Y, Hidaka H & Watanabe Y (1999) Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J Biol Chem 274, 2059720602.
  • 45
    Butt E, Bernhardt M, Smolenski A, Kotsonis P, Frohlich LG, Sickmann A, Meyer HE, Lohmann SM & Schmidt HH (2000) Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases. J Biol Chem 275, 51795187.
  • 46
    Lane P & Gross SS (2002) Disabling a C-terminal autoinhibitory control element in endothelial nitric-oxide synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli. J Biol Chem 277, 1908719094.
  • 47
    Ghosh S, Gachhui R, Crooks C, Wu C, Lisanti MP & Stuehr DJ (1998) Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis. J Biol Chem 273, 2226722271.
  • 48
    Sato Y, Sagami I & Shimizu T (2004) Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase. Molecular mechanism for inhibition of NO formation. J Biol Chem 279, 88278836.
  • 49
    Cao S, Yao J, McCabe TJ, Yao Q, Katusic ZS, Sessa WC & Shah V (2001) Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function. J Biol Chem 276, 1424914256.
  • 50
    Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A & Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821824.
  • 51
    Stuehr DJ, Santolini J, Wang ZQ, Wei CC & Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279, 3616736170.
  • 52
    Leys D, Basran J, Talfournier F, Sutcliffe MJ & Scrutton NS (2003) Extensive conformational sampling in a ternary electron transfer complex. Nat Struct Biol 10, 219225.
  • 53
    Toogood HS, Leys D & Scrutton NS (2007) Dynamics driving function: new insights from electron transferring flavoproteins and partner complexes. FEBS J 274, 54815504.
  • 54
    Wang M, Roberts DL, Paschke R, Shea TM, Masters BS & Kim JJ (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci USA 94, 84118416.
  • 55
    Grunau A, Geraki K, Grossmann JG & Gutierrez A (2007) Conformational dynamics and the energetics of protein–ligand interactions: role of interdomain loop in human cytochrome P450 reductase. Biochemistry 46, 82448255.
  • 56
    Neeli R, Girvan HM, Lawrence A, Warren MJ, Leys D, Scrutton NS & Munro AW (2005) The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett 579, 55825588.
  • 57
    Kitazume T, Haines DC, Estabrook RW, Chen B & Peterson JA (2007) Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Biochemistry 46, 1189211901.
  • 58
    Ilagan RP, Tiso M, Konas DW, Hemann C, Durra D, Hille R & Stuehr DJ (2008) Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric-oxide synthase flavoproteins. J Biol Chem 283, 1960319615.
  • 59
    Craig DH, Chapman SK & Daff S (2002) Calmodulin activates electron transfer through neuronal nitric-oxide synthase reductase domain by releasing an NADPH-dependent conformational lock. J Biol Chem 277, 3398733994.
  • 60
    Tiso M, Konas DW, Panda K, Garcin ED, Sharma M, Getzoff ED & Stuehr DJ (2005) C-terminal tail residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric-oxide synthase. J Biol Chem 280, 3920839219.
  • 61
    Konas DW, Zhu K, Sharma M, Aulak KS, Brudvig GW & Stuehr DJ (2004) The FAD-shielding residue Phe1395 regulates neuronal nitric-oxide synthase catalysis by controlling NADP+ affinity and a conformational equilibrium within the flavoprotein domain. J Biol Chem 279, 3541235425.
  • 62
    Konas DW, Takaya N, Sharma M & Stuehr DJ (2006) Role of Asp(1393) in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein. Biochemistry 45, 1259612609.
  • 63
    Ilagan RP, Tejero J, Aulak KS, Ray SS, Hemann C, Wang ZQ, Gangoda M, Zweier JL & Stuehr DJ (2009) Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase. Biochemistry 48, 38643876.
  • 64
    Ghosh DK, Vogelien DL, Assan-Menash IB, Couser LM, Dinsmore NE, Rogers AG, Weinberg JB & Salerno JC (2008) Function of the reductase unit of nitric oxide synthase: catalytic model. Nitric Oxide 19, S50.
  • 65
    Presta A, Weber-Main AM, Stankovich MT & Stuehr D (1998) Comparative effects of substrates and pterin cofactor on the heme midpoint potential in inducible and neuronal nitric oxide synthases. J Am Chem Soc 120, 94609465.
  • 66
    Mendes P (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9, 563571.
  • 67
    Noble MA, Munro AW, Rivers SL, Robledo L, Daff SN, Yellowlees LJ, Shimizu T, Sagami I, Guillemette JG & Chapman SK (1999) Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase. Biochemistry 38, 1641316418.
  • 68
    Dunford AJ, Rigby SEJ, Hay S, Munro AW & Scrutton NS (2007) Conformational and thermodynamic control of electron transfer in neuronal nitric oxide synthase. Biochemistry 46, 50185029.
  • 69
    Garnaud PE, Koetsier M, Ost TW & Daff S (2004) Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase. Biochemistry 43, 1103511044.
  • 70
    Grunau A, Paine MJ, Ladbury JE & Gutierrez A (2006) Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase. Biochemistry 45, 14211434.
  • 71
    Deng Z, Aliverti A, Zanetti G, Arakaki AK, Ottado J, Orellano EG, Calcaterra NB, Ceccarelli EA, Carrillo N & Karplus PA (1999) A productive NADP+ binding mode of ferredoxin–NADP+ reductase revealed by protein engineering and crystallographic studies. Nat Struct Biol 6, 847853.
  • 72
    Dunford AJ, Marshall KR, Munro AW & Scrutton NS (2004) Thermodynamic and kinetic analysis of the isolated FAD domain of rat neuronal nitric oxide synthase altered in the region of the FAD shielding residue Phe1395. Eur J Biochem 271, 25482560.
  • 73
    Gutierrez A, Doehr O, Paine M, Wolf CR, Scrutton NS & Roberts GC (2000) Trp-676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases. Biochemistry 39, 1599015999.
  • 74
    Nogues I, Tejero J, Hurley JK, Paladini D, Frago S, Tollin G, Mayhew SG, Gomez-Moreno C, Ceccarelli EA, Carrillo N et al. (2004) Role of the C-terminal tyrosine of ferredoxin–nicotinamide adenine dinucleotide phosphate reductase in the electron transfer processes with its protein partners ferredoxin and flavodoxin. Biochemistry 43, 61276137.
  • 75
    Piubelli L, Aliverti A, Arakaki AK, Carrillo N, Ceccarelli EA, Karplus PA & Zanetti G (2000) Competition between C-terminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferredoxin–NADP(+) reductase. J Biol Chem 275, 1047210476.
  • 76
    Tejero J, Perez-Dorado I, Maya C, Martinez-Julvez M, Sanz-Aparicio J, Gomez-Moreno C, Hermoso JA & Medina M (2005) C-terminal tyrosine of ferredoxin–NADP+ reductase in hydride transfer processes with NAD(P)+/H. Biochemistry 44, 1347713490.
  • 77
    Welland A, Garnaud PE, Kitamura M, Miles CS & Daff S (2008) Importance of the domain–domain interface to the catalytic action of the NO synthase reductase domain. Biochemistry 47, 97719780.
  • 78
    Knight K & Scrutton NS (2002) Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase. Biochem J 367, 1930.
  • 79
    Gutierrez A, Munro AW, Grunau A, Wolf CR, Scrutton NS & Roberts GC (2003) Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme binding. Relaxation kinetic studies with coenzyme analogues. Eur J Biochem 270, 26122621.
  • 80
    Matsuda H & Iyanagi T (1999) Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain. Biochim Biophys Acta 1473, 345355.
  • 81
    Guan ZW, Kamatani D, Kimura S & Iyanagi T (2003) Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human neuronal nitric-oxide synthase and inducible nitric-oxide synthase flavin domains. J Biol Chem 278, 3085930868.
  • 82
    Guan ZW & Iyanagi T (2003) Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase. Arch Biochem Biophys 412, 6576.
  • 83
    Yamamoto K, Kimura S, Shiro Y & Iyanagi T (2005) Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase. Arch Biochem Biophys 440, 6578.
  • 84
    Nishino Y, Yamamoto K, Kimura S, Kikuchi A, Shiro Y & Iyanagi T (2007) Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human endothelial NOS reductase domain. Arch Biochem Biophys 465, 254265.
  • 85
    Hamdane D, Xia C, Im SC, Zhang H, Kim JJ & Waskell L (2009) Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. J Biol Chem 284, 1137411384.
  • 86
    Newman E, Spratt DE, Mosher J, Cheyne B, Montgomery HJ, Wilson DL, Weinberg JB, Smith SM, Salerno JC, Ghosh DK et al. (2004) Differential activation of nitric-oxide synthase isozymes by calmodulin–troponin C chimeras. J Biol Chem 279, 3354733557.
  • 87
    Spratt DE, Newman E, Mosher J, Ghosh DK, Salerno JC & Guillemette JG (2006) Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs. FEBS J 273, 17591771.
  • 88
    Adak S, Santolini J, Tikunova S, Wang Q, Johnson JD & Stuehr DJ (2001) Neuronal nitric-oxide synthase mutant (Ser-1412 [RIGHTWARDS ARROW] Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis. J Biol Chem 276, 12441252.
  • 89
    Gachhui R, Abu-Soud HM, Ghosh DK, Presta A, Blazing MA, Mayer B, George SE & Stuehr DJ (1998) Neuronal nitric-oxide synthase interaction with calmodulin–troponin C chimeras. J Biol Chem 273, 54515454.
  • 90
    Panda K, Haque MM, Garcin-Hosfield ED, Durra D, Getzoff ED & Stuehr DJ (2006) Surface charge interactions of the FMN module govern catalysis by nitric-oxide synthase. J Biol Chem 281, 3681936827.
  • 91
    Nisimoto Y, Motalebi S, Han CH & Lambeth JD (1999) The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem 274, 2299923005.
  • 92
    Shimanuki T, Sato H, Daff S, Sagami I & Shimizu T (1999) Crucial role of Lys(423) in the electron transfer of neuronal nitric-oxide synthase. J Biol Chem 274, 2695626961.
  • 93
    Feng C, Thomas C, Holliday MA, Tollin G, Salerno JC, Ghosh DK & Enemark JH (2006) Direct measurement by laser flash photolysis of intramolecular electron transfer in a two-domain construct of murine inducible nitric oxide synthase. J Am Chem Soc 128, 38083811.
  • 94
    Feng C, Tollin G, Holliday MA, Thomas C, Salerno JC, Enemark JH & Ghosh DK (2006) Intraprotein electron transfer in a two-domain construct of neuronal nitric oxide synthase: the output state in nitric oxide formation. Biochemistry 45, 63546362.
  • 95
    Feng C, Roman LJ, Hazzard JT, Ghosh DK, Tollin G & Masters BS (2008) Deletion of the autoregulatory insert modulates intraprotein electron transfer in rat neuronal nitric oxide synthase. FEBS Lett 582, 27682772.
  • 96
    Rozhkova EA, Fujimoto N, Sagami I, Daff SN & Shimizu T (2002) Interactions between the isolated oxygenase and reductase domains of neuronal nitric-oxide synthase: assessing the role of calmodulin. J Biol Chem 277, 1688816894.
  • 97
    Higashimoto Y, Sakamoto H, Hayashi S, Sugishima M, Fukuyama K, Palmer G & Noguchi M (2005) Involvement of NADPH in the interaction between heme oxygenase-1 and cytochrome P450 reductase. J Biol Chem 280, 729737.
  • 98
    Wang J & de Montellano PR (2003) The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase. J Biol Chem 278, 2006920076.
  • 99
    Haque MM, Panda K, Tejero J, Aulak KS, Fadlalla MA, Mustovich AT & Stuehr DJ (2007) A connecting hinge represses the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104, 92549259.
  • 100
    Stuehr DJ, Wei CC, Santolini J, Wang Z, Aoyagi M & Getzoff ED (2004) Radical reactions of nitric oxide synthases. Biochem Soc Symp 71, 3949.
  • 101
    Feng CJ, Tollin G, Hazzard JT, Nahm NJ, Guillemette JG, Salerno JC & Ghosh DK (2007) Direct measurement by laser flash photolysis of intraprotein electron transfer in a rat neuronal nitric oxide synthase. J Am Chem Soc 129, 56215629.
  • 102
    Roman LJ & Masters BS (2006) Electron transfer by neuronal nitric oxide synthase is regulated by concerted interaction of calmodulin and two intrinsic regulatory elements. J Biol Chem 281, 2311123118.
  • 103
    Daff S (2003) Calmodulin-dependent regulation of mammalian nitric oxide synthase. Biochem Soc Trans 31, 502505.
  • 104
    Nishida CR & de Montellano PR (2001) Control of electron transfer in nitric-oxide synthases. Swapping of autoinhibitory elements among nitric-oxide synthase isoforms. J Biol Chem 276, 2011620124.
  • 105
    Chen PF & Wu KK (2003) Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase. J Biol Chem 278, 5239252400.
  • 106
    Gribovskaja I, Brownlow KC, Dennis SJ, Rosko AJ, Marletta MA & Stevens-Truss R (2005) Calcium-binding sites of calmodulin and electron transfer by inducible nitric oxide synthase. Biochemistry 44, 75937601.
  • 107
    Stevens-Truss R, Beckingham K & Marletta MA (1997) Calcium binding sites of calmodulin and electron transfer by neuronal nitric oxide synthase. Biochemistry 36, 1233712345.
  • 108
    Stevens-Truss R & Marletta MA (1995) Interaction of calmodulin with the inducible murine macrophage nitric oxide synthase. Biochemistry 34, 1563815645.
  • 109
    Lee SJ, Beckingham K & Stull JT (2000) Mutations at lysine 525 of inducible nitric-oxide synthase affect its Ca2+-independent activity. J Biol Chem 275, 3606736072.
  • 110
    Lee SJ & Stull JT (1998) Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase. J Biol Chem 273, 2743027437.
  • 111
    Sharp RE, Chapman SK & Reid GA (1996) Modulation of flavocytochrome b2 intraprotein electron transfer via an interdomain hinge region. Biochem J 316, 507513.
  • 112
    Sharp RE, Chapman SK & Reid GA (1996) Deletions in the interdomain hinge region of flavocytochrome b2: effects on intraprotein electron transfer. Biochemistry 35, 891899.
  • 113
    Sharp RE, White P, Chapman SK & Reid GA (1994) Role of the interdomain hinge of flavocytochrome b2 in intra- and inter-protein electron transfer. Biochemistry 33, 51155120.
  • 114
    White P, Manson FD, Brunt CE, Chapman SK & Reid GA (1993) The importance of the interdomain hinge in intramolecular electron transfer in flavocytochrome b2. Biochem J 291, 8994.
  • 115
    Chen PF & Wu KK (2000) Characterization of the roles of the 594-645 region in human endothelial nitric-oxide synthase in regulating calmodulin binding and electron transfer. J Biol Chem 275, 1315513163.
  • 116
    Adak S, Sharma M, Meade AL & Stuehr DJ (2002) A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity. Proc Natl Acad Sci USA 99, 1351613521.
  • 117
    McCabe TJ, Fulton D, Roman LJ & Sessa WC (2000) Enhanced electron flux and reduced calmodulin dissociation may explain ‘calcium-independent’ eNOS activation by phosphorylation. J Biol Chem 275, 61236128.
  • 118
    Bender AT, Silverstein AM, Demady DR, Kanelakis KC, Noguchi S, Pratt WB & Osawa Y (1999) Neuronal nitric-oxide synthase is regulated by the hsp90-based chaperone system in vivo. J Biol Chem 274, 14721478.
  • 119
    Yoshida M & Xia Y (2003) Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. J Biol Chem 278, 3695336958.
  • 120
    Song Y, Zweier JL & Xia Y (2001) Heat-shock protein 90 augments neuronal nitric oxide synthase activity by enhancing Ca2+/calmodulin binding. Biochem J 355, 357360.
  • 121
    Takahashi S & Mendelsohn ME (2003) Calmodulin-dependent and -independent activation of endothelial nitric-oxide synthase by heat shock protein 90. J Biol Chem 278, 93399344.
  • 122
    Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, McCabe TJ & Sessa WC (2000) Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275, 2226822272.
  • 123
    Cao S, Yao J & Shah V (2003) The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function. J Biol Chem 278, 58945901.
  • 124
    Golser R, Gorren AC, Leber A, Andrew P, Habisch HJ, Werner ER, Schmidt K, Venema RC & Mayer B (2000) Interaction of endothelial and neuronal nitric-oxide synthases with the bradykinin B2 receptor. Binding of an inhibitory peptide to the oxygenase domain blocks uncoupled NADPH oxidation. J Biol Chem 275, 52915296.
  • 125
    Ju H, Venema VJ, Marrero MB & Venema RC (1998) Inhibitory interactions of the bradykinin B2 receptor with endothelial nitric-oxide synthase. J Biol Chem 273, 2402524029.
  • 126
    Kone BC, Kuncewicz T, Zhang W & Yu ZY (2003) Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Physiol Renal Physiol 285, F178F190.
  • 127
    Dudzinski DM & Michel T (2007) Life history of eNOS: partners and pathways. Cardiovasc Res 75, 247260.
  • 128
    Mount PF, Kemp BE & Power DA (2007) Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol 42, 271279.