• 1
    Peña MM, Lee J & Thiele DJ (1999) A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129, 12511260.
  • 2
    Kaler SG (1998) Metabolic and molecular bases of Menkes disease and occipital horn syndrome. Pediatr Dev Pathol 1, 8598.
  • 3
    Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7, 6469.
  • 4
    La Fontaine S & Mercer JF (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 463, 149167.
  • 5
    Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J & Klausner RD (1994) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76, 393402.
  • 6
    Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE & O’Halloran TV (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853856.
  • 7
    Yuan DS, Dancis A & Klausner RD (1997) Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem 272, 2578725793.
  • 8
    Yuan DS, Stearman R, Dancis A, Dunn T, Beeler T & Klausner RD (1995) The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A 92, 26322636.
  • 9
    Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD & Dancis A (1996) A permease–oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 15521557.
  • 10
    Lesuisse E & Labbé P (1989) Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol 135, 257263.
  • 11
    Dancis A, Klausner RD, Hinnebusch AG & Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10, 22942301.
  • 12
    Portnoy ME, Rosenzweig AC, Rae T, Huffman DL, O’Halloran TV & Culotta VC (1999) Structure–function analyses of the ATX1 metallochaperone. J Biol Chem 274, 1504115045.
  • 13
    Arnesano F, Banci L, Bertini I, Huffman DL & O’Halloran TV (2001) Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry 40, 15281539.
  • 14
    Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL & O’Halloran TV (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12, 255271.
  • 15
    Lin SJ, Pufahl RA, Dancis A, O’Halloran TV & Culotta VC (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272, 92159220.
  • 16
    van Dongen EM, Klomp LW & Merkx M (2004) Copper-dependent protein–protein interactions studied by yeast two-hybrid analysis. Biochem Biophys Res Commun 323, 789795.
  • 17
    Huffman DL & O’Halloran TV (2000) Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2. J Biol Chem 275, 1861118614.
  • 18
    Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC & Gitlin JD (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272, 92219226.
  • 19
    Himelblau E, Mira H, Lin SJ, Culotta VC, Penarrubia L & Amasino RM (1998) Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117, 12271234.
  • 20
    Wakabayashi T, Nakamura N, Sambongi Y, Wada Y, Oka T & Futai M (1998) Identification of the copper chaperone, CUC-1, in Caenorhabditis elegans: tissue specific coexpression with the copper transporting ATPase, CUA-1. FEBS Lett 440, 141146.
  • 21
    Uldschmid A, Engel M, Dombi R & Marbach K (2002) Identification and functional expression of tahA, a filamentous fungal gene involved in copper trafficking to the secretory pathway in Trametes versicolor. Microbiology 148, 40494058.
  • 22
    Morin I, Cuillel M, Lowe J, Crouzy S, Guillain F & Mintz E (2005) Cd2+- or Hg2+-binding proteins can replace the Cu+-chaperone Atx1 in delivering Cu+ to the secretory pathway in yeast. FEBS Lett 579, 11171123.
  • 23
    Payne AS & Gitlin JD (1998) Functional expression of the Menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J Biol Chem 273, 37653770.
  • 24
    Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD & Gitlin JD (1997) Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 272, 2146121466.
  • 25
    Lowe J, Vieyra A, Catty P, Guillain F, Mintz E & Cuillel M (2004) A mutational study in the transmembrane domain of Ccc2p, the yeast Cu(I)-ATPase, shows different roles for each Cys–Pro–Cys cysteine. J Biol Chem 279, 2598625994.
  • 26
    Payne AS, Kelly EJ & Gitlin JD (1998) Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation. Proc Natl Acad Sci U S A 95, 1085410859.
  • 27
    Hsi G, Cullen LM, Macintyre G, Chen MM, Glerum DM & Cox DW (2008) Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system. Hum Mutat 29, 491501.
  • 28
    Paulsen M, Lund C, Akram Z, Winther JR, Horn N & Møller LB (2006) Evidence that translation reinitiation leads to a partially functional Menkes protein containing two copper-binding sites. Am J Hum Genet 79, 214229.
  • 29
    Strausak D, La Fontaine S, Hill J, Firth SD, Lockhart PJ & Mercer JF (1999) The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein. J Biol Chem 274, 1117011177.
  • 30
    Cater MA, Forbes J, La Fontaine S, Cox D & Mercer JF (2004) Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites. Biochem J 380, 805813.
  • 31
    Banci L, Bertini I, Chasapis CT, Rosato A & Tenori L (2007) Interaction of the two soluble metal-binding domains of yeast Ccc2 with copper(I)–Atx1. Biochem Biophys Res Commun 364, 645649.
  • 32
    Banci L, Bertini I, Cantini F, Felli IC, Gonnelli L, Hadjiliadis N, Pierattelli R, Rosato A & Voulgaris P (2006) The Atx1–Ccc2 complex is a metal-mediated protein–protein interaction. Nat Chem Biol 2, 367368.
  • 33
    Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV & Rosenzweig AC (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol 7, 766771.
  • 34
    Kihlken MA, Leech AP & Le Brun NE (2002) Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis. Biochem J 368, 729739.
  • 35
    Miras R, Morin I, Jacquin O, Cuillel M, Guillain F & Mintz E (2008) Interplay between glutathione, Atx1 and copper. 1. Copper(I) glutathionate induced dimerization of Atx1. J Biol Inorg Chem 13, 195205.
  • 36
    Bal N, Mintz E, Guillain F & Catty P (2001) A possible regulatory role for the metal-binding domain of CadA, the Listeria monocytogenes Cd2+-ATPase. FEBS Lett 506, 249252.
  • 37
    Mitra B & Sharma R (2001) The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry 40, 76947699.
  • 38
    Tsivkovskii R, MacArthur BC & Lutsenko S (2001) The Lys1010–Lys1325 fragment of the Wilson’s disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner. J Biol Chem 276, 22342242.
  • 39
    Huster D & Lutsenko S (2003) The distinct roles of the N-terminal copper-binding sites in regulation of catalytic activity of the Wilson’s disease protein. J Biol Chem 278, 3221232218.
  • 40
    Bal N, Wu CC, Catty P, Guillain F & Mintz E (2003) Cd2+and the N-terminal metal-binding domain protect the putative membranous CPC motif of the Cd2+-ATPase of Listeria monocytogenes. Biochem J 369, 681685.
  • 41
    Voskoboinik I, Mar J, Strausak D & Camakaris J (2001) The regulation of catalytic activity of the Menkes copper-translocating P-type ATPase. Role of high-affinity copper-binding sites. J Biol Chem 276, 2862028627.
  • 42
    Tsivkovskii R, Eisses JF, Kaplan JH & Lutsenko S (2002) Functional properties of the copper-transporting ATPase ATP7B (the Wilson’s disease protein) expressed in insect cells. J Biol Chem 277, 976983.
  • 43
    Jencks WP (1989) How does a calcium pump pump calcium? J Biol Chem 264, 1885518858.
  • 44
    Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Møller JV & Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450, 10361042.
  • 45
    Rae TD, Schmidt PJ, Pufahl RA, Culotta VC & O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805808.
  • 46
    Walker JM, Tsivkovskii R & Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277, 2795327959.
  • 47
    Wu CC, Rice WJ & Stokes DL (2008) Structure of a copper pump suggests a regulatory role for its metal-binding domain. Structure 16, 976985.
  • 48
    Gonzalez-Guerrero M & Argüello JM (2008) Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci U S A 105, 59925997.
  • 49
    Zhang D, Yang Y, Castlebury LA & Cerniglia CE (1996) A method for the large scale isolation of high transformation efficiency fungal genomic DNA. FEMS Microbiol Lett 145, 261265.
  • 50
    Sikorski RS & Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 1927.
  • 51
    Khan MI, Ecker DJ, Butt T, Gorman JA & Crooke ST (1987) A vector for construction of gene libraries and the expression of heterologous genes in Saccharomyces cerevisiae. Plasmid 17, 171172.
  • 52
    Forbes JR & Cox DW (1998) Functional characterization of missense mutations in ATP7B: Wilson disease mutation or normal variant? Am J Hum Genet 63, 16631674.