• 1
    Martin C & Smith AM (1995) Starch biosynthesis. Plant Cell 7, 971985.
  • 2
    Tester RF, Karkalas J & Qi X (2004) Starch – composition, fine structure and architecture. J Cereal Sci 39, 151165.
  • 3
    Buléon A, Colonna P, Planchot V & Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23, 85112.
  • 4
    Jane J, Kasemsuwan T, Leas S, Zobel H & Robyt JF (1994) Anthology of starch granule morphology by scanning electron microscopy. Starch/Stärke 46, 121129.
  • 5
    Manners DJ (1991) Recent developments in our understanding of glycogen structure. Carbohydr Polym 16, 3782.
  • 6
    Sorimachi K, Jacks AJ, Le Gal-Coëffet MF, Williamson G, Archer DB & Williamson MP (1996) Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol 259, 970987.
  • 7
    Williamson MP, Le Gal-Coëffet MF, Sorimachi K, Furniss CS, Archer DB & Williamson G (1997) Function of conserved tryptophans in the Aspergillus niger glucoamylase 1 starch binding domain. Biochemistry 36, 75357539.
  • 8
    Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB & Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure 5, 647661.
  • 9
    Lawson CL, van Montfort R, Strokopytov B, Rozeboom HJ, Kalk KH, de Vries GE, Penninga D, Dijkhuizen L & Dijkstra BW (1994) Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol 236, 590600.
  • 10
    Penninga D, van der Veen BA, Knegtel RMA, van Hijum SAFT, Rozeboom HJ, Kalk KH, Dijkstra BW & Dijkhuizen L (1996) The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem 271, 3277732784.
  • 11
    Dauter Z, Dauter M, Brzozowski AM, Christensen S, Borchert TV, Beier L, Wilson KS & Davies GJ (1999) X-ray structure of Novamyl, the five-domain ‘maltogenic’α-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7Å resolution. Biochemistry 38, 83858392.
  • 12
    Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R & Utsumi S (1999) Structure of raw starch-digesting Bacillus cereusβ-amylase complexed with maltose. Biochemistry 38, 70507061.
  • 13
    Oyama T, Kusunoki M, Kishimoto Y, Takasaki Y & Nitta Y (1999) Crystal structure of α-amylase from Bacillus cereus var. mycoides at 2.2 Å resolution. J Biochem 125, 11201130.
  • 14
    Svensson B, Pedersen TG, Svendsen I, Sakai T & Ottesen M (1982) Characterization of two forms of glucoamylase from Aspergillus niger. Carlsberg Res Commun 47, 5569.
  • 15
    Flor PQ & Hayashida S (1983) Production and characteristics of raw starch-digesting glucoamylase O from a protease-negative, glycosidase-negative Aspergillus awamori var. kawachi mutant. Appl Environ Microbiol 45, 905912.
  • 16
    Svensson B (1988) Regional distant sequence homology between amylases, α-glucosidases and transglucanosylases. FEBS Lett 230, 7276.
  • 17
    Wang J, Stuckey JA, Wishart MJ & Dixon JE (2002) A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. J Biol Chem 277, 23772380.
  • 18
    Baunsgaard L, Lütken H, Mikkelsen R, Glaring MA, Pham TT & Blennow A (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis. Plant J 41, 595605.
  • 19
    Christiansen C, Abou Hachem M, Glaring MA, Viksø-Nielsen A, Sigurskjold BW, Svensson B & Blennow A (2009) A CBM20 low-affinity starch binding domain from Glucan, Water Dikinase. FEBS Lett 583, 11591163.
  • 20
    Coutinho PM & Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering (Gilbert HJ, Davies GJ, Henrissat B & Svensson B, eds), pp. 312. Royal Society of Chemistry, Cambridge.
  • 21
    Gilkes NR, Warren RA, Miller RC Jr & Kilburn DG (1988) Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem 263, 1040110407.
  • 22
    Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T & Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 170, 575581.
  • 23
    Shinshi H, Neuhas JM, Ryals J & Meins F Jr (1990) Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol Biol 14, 357368.
  • 24
    Lerner DR & Raikhel NV (1992) The gene for stinging nettle lectin (Urtica dioica agglutinin) encodes both a lectin and a chitinase. J Biol Chem 267, 1108511091.
  • 25
    Boraston AB, Mclean BW, Kormos JM, Alam M, Gilkes NR, Haynes CA, Tomme P, Kilburn DG & Warren RAJ (1999) Carbohydrate-binding modules: diversity of structure and function. In Recent Advances in Carbohydrate Bioengineering (Gilbert HJ, Davies GJ, Henrissat B & Svensson B, eds), pp. 202211. Royal Society of Chemistry, Cambridge.
  • 26
    Abou Hachem M, Karlsson EN, Bartonek-Roxa E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP & Holst O (2000) Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 345, 5360.
  • 27
    Henrissat B & Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7, 637644.
  • 28
    Janecek S & Sevcik J (1999) The evolution of starch-binding domain. FEBS Lett 456, 119125.
  • 29
    Janecek S, Svensson B & MacGregor EA (2003) Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. Eur J Biochem 270, 635645.
  • 30
    Lin LL, Lo HF, Chi MC & Ku KL (2003) Functional expression of the raw starch-binding domain of Bacillus sp. strain TS-23 α-amylase in recombinant Escherichia coli. Starch/Stärke 55, 197202.
  • 31
    Lo HF, Chiang WY, Chi MC, Hu HY & Lin LL (2004) Site-directed mutagenesis of the conserved threonine, tryptophan, and lysine residues in the starch-binding domain of Bacillus sp. strain TS-23 α-amylase. Curr Microbiol 48, 280284.
  • 32
    Mezaki Y, Katsuya Y, Kubota M & Matsuura Y (2001) Crystallization and structural analysis of intact maltotetraose-forming exo-amylase from Pseudomonas stutzeri. Biosci Biotechnol Biochem 65, 222225.
  • 33
    Steichen JM, Petty RV & Sharkey TD (2008) Domain characterization of a 4-α-glucanotransferase essential for maltose metabolism in photosynthetic leaves. J Biol Chem 283, 2079720804.
  • 34
    Machovic M, Svensson B, MacGregor EA & Janecek S (2005) A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J 272, 54975513.
  • 35
    Machovic M & Janecek S (2006) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63, 27102724.
  • 36
    Machovic M & Janecek S (2006) The evolution of putative starch-binding domains. FEBS Lett 580, 63496356.
  • 37
    Svensson B, Jespersen H, Sierks MR & MacGregor EA (1989) Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J 264, 309311.
  • 38
    Liu YN, Lai YT, Chou WI, Chang MD & Lyu PC (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 403, 2130.
  • 39
    Minassian BA, Ianzano L, Meloche M, Andermann E, Rouleau GA, Gado-Escueta AV & Scherer SW (2000) Mutation spectrum and predicted function of laforin in Lafora’s progressive myoclonus epilepsy. Neurology 55, 341346.
  • 40
    Janecek S (2002) A motif of a microbial starch-binding domain found in human genethonin. Bioinformatics 18, 15341537.
  • 41
    Bork P, Dandekar T, Eisenhaber F & Huynen M (1998) Characterization of targeting domains by sequence analysis: glycogen-binding domains in protein phosphatases. J Mol Med 76, 7779.
  • 42
    Machovic M & Janecek S (2008) Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48. Biologia 63, 10571068.
  • 43
    Polekhina G, Gupta A, Van Denderen BJ, Feil SC, Kemp BE, Stapleton D & Parker MW (2005) Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13, 14531462.
  • 44
    Niittyla T, Comparot-Moss S, Lue WL, Messerli G, Trevisan M, Seymour MD, Gatehouse JA, Villadsen D, Smith SM, Chen J et al. (2006) Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals. J Biol Chem 281, 1181511818.
  • 45
    Palopoli N, Busi MV, Fornasari MS, Gomez-Casati D, Ugalde R & Parisi G (2006) Starch-synthase III family encodes a tandem of three starch-binding domains. Proteins 65, 2731.
  • 46
    Valdez HA, Busi MV, Wayllace NZ, Parisi G, Ugalde RA & Gomez-Casati DF (2008) Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry 47, 30263032.
  • 47
    Hemker M, Stratmann A, Goeke K, Schroder W, Lenz J, Piepersberg W & Pape H (2001) Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50. J Bacteriol 183, 44844492.
  • 48
    Buitink J, Thomas M, Gissot L & Leprince O (2004) Starvation, osmotic stress and desiccation tolerance lead to expression of different genes of the regulatory β and γ subunits of the SnRK1 complex in germinating seeds of Medicago truncatula. Plant Cell Environ 27, 5567.
  • 49
    Boraston AB, Healey M, Klassen J, Ficko-Blean E, Van Lammerts BA & Law V (2006) A structural and functional analysis of α-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem 281, 587598.
  • 50
    Abe A, Tonozuka T, Sakano Y & Kamitori S (2004) Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J Mol Biol 335, 811822.
  • 51
    Mikami B, Iwamoto H, Malle D, Yoon HJ, Mirkan-Sarikaya E, Mezaki Y & Katsuya Y (2006) Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol 359, 690707.
  • 52
    Jacks AJ, Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB & Williamson MP (1995) 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Eur J Biochem 233, 568578.
  • 53
    Klein C & Schulz GE (1991) Structure of cyclodextrin glycosyltransferase refined at 2.0 Å resolution. J Mol Biol 217, 737750.
  • 54
    Knegtel RMA, Strokopytov B, Penninga D, Faber OG, Rozeboom HJ, Kalk KH, Dijkhuizen L & Dijkstra BW (1995) Crystallographic studies of the interaction of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 with natural substrates and products. J Biol Chem 270, 2925629264.
  • 55
    Harata K, Haga K, Nakamura A, Aoyagi M & Yamane K (1996) X-ray structure of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011. Comparison of two independent molecules at 1.8 Å resolution. Acta Crystallogr D Biol Crystallogr 52, 11361145.
  • 56
    Sugimoto H, Nakaura M, Kosuge Y, Imai K, Miyake H, Karita S & Tanaka A (2007) Thermodynamic effects of disulfide bond on thermal unfolding of the starch-binding domain of Aspergillus niger glucoamylase. Biosci Biotechnol Biochem 71, 15351541.
  • 57
    Tung JY, Chang MD, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL & Sun YJ (2008) Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J 416, 2736.
  • 58
    Robert X, Haser R, Gottschalk TE, Ratajczak F, Driguez H, Svensson B & Aghajari N (2003) The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure 11, 973984.
  • 59
    Robert X, Haser R, Mori H, Svensson B & Aghajari N (2005) Oligosaccharide binding to barley α-amylase 1. J Biol Chem 280, 3296832978.
  • 60
    Oyama T, Miyake H, Kusunoki M & Nitta Y (2003) Crystal structures of α-amylase from Bacillus cereus var. mycoides in complexes with substrate analogs and affinity-labeling reagents. J Biochem 133, 467474.
  • 61
    Nanmori T, Nagai M, Shimizu Y, Shinke R & Mikami B (1993) Cloning of the β-amylase gene from Bacillus cereus and characteristics of the primary structure of the enzyme. Appl Environ Microbiol 59, 623627.
  • 62
    Bott R, Saldajeno M, Cuevas W, Ward D, Scheffers M, Aehle W, Karkehabadi S, Sandgren M & Hansson H (2008) Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry 47, 57465754.
  • 63
    Jørgensen AD, Nohr J, Kastrup JS, Gajhede M, Sigurskjold BW, Sauer J, Svergun DI, Svensson B & Vestergaard B (2008) Small angle X-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimers in solution. J Biol Chem 283, 1477214780.
  • 64
    Boraston AB, Bolam DN, Gilbert HJ & Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382, 769781.
  • 65
    Szabo L, Jamal S, Xie H, Charnock SJ, Bolam DN, Gilbert HJ & Davies GJ (2001) Structure of a family 15 carbohydrate-binding module in complex with xylopentaose. Evidence that xylan binds in an approximate 3-fold helical conformation. J Biol Chem 276, 4906149065.
  • 66
    Simpson PJ, Jamieson SJ, Abou Hachem M, Karlsson EN, Gilbert HJ, Holst O & Williamson MP (2002) The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase. Biochemistry 41, 57125719.
  • 67
    Pell G, Williamson MP, Walters C, Du H, Gilbert HJ & Bolam DN (2003) Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry 42, 93169323.
  • 68
    Belshaw NJ & Williamson G (1993) Specificity of the binding domain of glucoamylase 1. Eur J Biochem 211, 717724.
  • 69
    Xie H, Gilbert HJ, Charnock SJ, Davies GJ, Williamson MP, Simpson PJ, Raghothama S, Fontes CM, Dias FM, Ferreira LM et al. (2001) Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding. Biochemistry 40, 91679176.
  • 70
    Goto M, Tanigawa K, Kanlyakrit W & Hayashida S (1994) The mechanism of binding of glucoamylase 1 from Aspergillus-awamori var. kawachi to cyclodextrins and raw starch. Biosci Biotechnol Biochem 58, 4954.
  • 71
    Bolam DN, Ciruela A, Queen-Mason S, Simpson P, Williamson MP, Rixon JE, Boraston A, Hazlewood GP & Gilbert HJ (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331, 775781.
  • 72
    Takahashi T, Kato K, Ikegami Y & Irie M (1985) Different behavior towards raw starch of 3 forms of glucoamylase from a Rhizopus sp. J Biochem 98, 663671.
  • 73
    Boraston AB, Kwan E, Chiu P, Warren RA & Kilburn DG (2003) Recognition and hydrolysis of noncrystalline cellulose. J Biol Chem 278, 61206127.
  • 74
    Viksø-Nielsen A, Andersen C, Hoff T & Pedersen S (2006) Development of new α-amylases for raw starch hydrolysis. Biocatal Biotransformation 24, 121127.
  • 75
    Tomme P, Creagh AL, Kilburn DG & Haynes CA (1996) Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. 1. Binding specificity and calorimetric analysis. Biochemistry 35, 1388513894.
  • 76
    Carrard G, Koivula A, Soderlund H & Beguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97, 1034210347.
  • 77
    Southall SM, Simpson PJ, Gilbert HJ, Williamson G & Williamson MP (1999) The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett 447, 5860.
  • 78
    Giardina T, Gunning AP, Juge N, Faulds CB, Furniss CSM, Svensson B, Morris VJ & Williamson G (2001) Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol 313, 11491159.
  • 79
    Morris VJ, Gunning AP, Faulds CB, Williamson G & Svensson B (2005) AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native, and mutant starch binding domains: a model for the action of glucoamylase. Starch/Stärke 57, 17.
  • 80
    Bozonnet S, Jensen MT, Nielsen MM, Aghajari N, Jensen MH, Kramhoft B, Willemoes M, Tranier S, Haser R & Svensson B (2007) The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley α-amylase participates in substrate binding and activity. FEBS J 274, 50555067.
  • 81
    Nielsen MM, Seo ES, Bozonnet S, Aghajari N, Robert X, Haser R & Svensson B (2008) Multi-site substrate binding and interplay in barley α-amylase 1. FEBS Lett 582, 25672571.
  • 82
    Williamson G, Belshaw NJ & Williamson MP (1992) O-Glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Biochem J 282, 423428.
  • 83
    Ye Z, Miyake H, Tatsumi M, Nishimura S & Nitta Y (2004) Two additional carbohydrate-binding sites of β-amylase from Bacillus cereus var. mycoides are involved in hydrolysis and raw starch-binding. J Biochem 135, 355363.
  • 84
    Paldi T, Levy I & Shoseyov O (2003) Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem J 372, 905910.
  • 85
    Chen LJ, Ford C & Nikolov Z (1991) Adsorption to starch of a β-galactosidase fusion protein containing the starch-binding region of Aspergillus glucoamylase. Gene 99, 121126.
  • 86
    Dalmia BK & Nikolov ZL (1994) A glutathione S-transferase fusion protein with the starch-binding domain of Aspergillus glucoamylase. Ann NY Acad Sci 721, 160167.
  • 87
    Coutinho PM & Reilly PJ (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins 29, 334347.
  • 88
    Svensson B, Larsen K, Svendsen I & Boel E (1983) The complete amino acid sequence of glycoprotein, glucoamylase G1 from Aspergillus niger. Carlsberg Res Commun 48, 529544.
  • 89
    Svensson B, Larsen K & Gunnarsson A (1986) Characterization of a glucoamylase G2 from Aspergillus niger. Eur J Biochem 154, 497502.
  • 90
    Stoffer B, Frandsen TP, Busk PK, Schneider P, Svendsen I & Svensson B (1993) Production, purification and characterization of the catalytic domain of glucoamylase from Aspergillus niger. Biochem J 292, 197202.
  • 91
    Ueda S (1981) Fungal glucoamylases and raw starch digestion. Trends Plant Sci 6, 8990.
  • 92
    Belshaw NJ & Williamson G (1990) Production and purification of a granular-starch-binding domain of glucoamylase 1 from Aspergillus niger. FEBS Lett 269, 350353.
  • 93
    Dalmia BK & Nikolov ZL (1991) Characterization of glucoamylase adsorption to raw starch. Enzyme Microb Technol 13, 982990.
  • 94
    Dalmia BK & Nikolov ZL (1994) Characterization of a β-galactosidase fusion protein containing the starch-binding domain of Aspergillus glucoamylase. Enzyme Microb Technol 16, 1823.
  • 95
    Tanaka A, Karita S, Kosuge Y, Senoo K, Obata H & Kitamoto N (1998) Thermal unfolding of the starch binding domain of Aspergillus niger glucoamylase. Biosci Biotechnol Biochem 62, 21272132.
  • 96
    Le Gal-Coëffet MF, Jacks AJ, Sorimachi K, Williamson MP, Williamson G & Archer DB (1995) Expression in Aspergillus niger of the starch-binding domain of glucoamylase. Comparison with the proteolytically produced starch-binding domain. Eur J Biochem 233, 561567.
  • 97
    Goto M, Semimaru T, Furukawa K & Hayashida S (1994) Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Appl Environ Microbiol 60, 39263930.
  • 98
    Fierobe HP, Mirgorodskaya E, Frandsen TP, Roepstorff P & Svensson B (1997) Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts. Protein Expr Purif 9, 159170.
  • 99
    Belshaw NJ & Williamson G (1991) Interaction of β-cyclodextrin with the granular starch binding domain of glucoamylase. Biochim Biophys Acta 1078, 117120.
  • 100
    Dalmia BK, Schutte K & Nikolov ZL (1995) Domain E of Bacillus macerans cyclodextrin glucanotransferase: an independent starch-binding domain. Biotechnol Bioeng 47, 575584.
  • 101
    MacGregor EA, Janecek S & Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546, 120.
  • 102
    Lo HF, Lin LL, Chiang WY, Chie MC, Hsu WH & Chang CT (2002) Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch Microbiol 178, 115123.
  • 103
    Wanderley KJ, Torres FA, Moraes LM & Ulhoa CJ (2004) Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiol Lett 231, 165169.
  • 104
    Galdino AS, Ulhoa CJ, Moraes LM, Prates MV, Bloch C & Torres FA (2008) Cloning, molecular characterization and heterologous expression of AMY1, an α-amylase gene from Cryptococcus flavus. FEMS Microbiol Lett 280, 189194.
  • 105
    Penninga D, Strokopytov B, Rozeboom HJ, Lawson CL, Dijkstra BW, Bergsma J & Dijkhuizen L (1995) Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. Biochemistry 34, 33683376.
  • 106
    Chang HY, Irwin PM & Nikolov ZL (1998) Effects of mutations in the starch-binding domain of Bacillus macerans cyclodextrin glycosyltransferase. J Biotechnol 65, 191202.
  • 107
    Christensen T, Svensson B & Sigurskjold BW (1999) Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Biochemistry 38, 63006310.
  • 108
    Fujiwara S, Kakihara H, Sakaguchi K & Imanaka T (1992) Analysis of mutations in cyclodextrin glucanotransferase from Bacillus stearothermophilus which affect cyclization characteristics and thermostability. J Bacteriol 174, 74787481.
  • 109
    Ji Q, Oomen RJF, Vincken JP, Bolam DN, Gilbert HJ, Suurs LCJM & Visser RGF (2004) Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants. Plant Biotechnol J 2, 251260.
  • 110
    Sumitani J, Tottori T, Kawaguchi T & Arai M (2000) New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 α-amylase contributes to starch binding and raw starch degrading. Biochem J 350, 477484.
  • 111
    Guillen D, Santiago M, Linares L, Perez R, Morlon J, Ruiz B, Sanchez S & Rodriguez-Sanoja R (2007) α-Amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl Environ Microbiol 73, 38333837.
  • 112
    Mikkelsen R, Suszkiewicz K & Blennow A (2006) A novel type carbohydrate-binding module identified in α-glucan, water dikinases is specific for regulated plastidial starch metabolism. Biochemistry 45, 46744682.
  • 113
    Nitta Y, Shirakawa M & Takasaki Y (1996) Kinetic study of the active site structure of β-amylase from Bacillus cereus var. mycoides. Biosci Biotechnol Biochem 60, 823827.
  • 114
    Yoon HJ, Hirata A, Adachi M, Sekine A, Utsumi S & Mikami B (1999) Structure of the starch-binding domain of Bacillus cereusβ-amylase. J Microbiol Biotechnol 9, 619623.
  • 115
    Kötting O, Pusch K, Tiessen A, Geigenberger P, Steup M & Ritte G (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol 137, 242252.
  • 116
    Chan EM, Ackerley CA, Lohi H, Ianzano L, Cortez MA, Shannon P, Scherer SW & Minassian BA (2004) Laforin preferentially binds the neurotoxic starch-like polyglucosans, which form in its absence in progressive myoclonus epilepsy. Hum Mol Genet 13, 11171129.
  • 117
    Lohi H, Ianzano L, Zhao XC, Chan EM, Turnbull J, Scherer SW, Ackerley CA & Minassian BA (2005) Novel glycogen synthase kinase 3 and ubiquitination pathways in progressive myoclonus epilepsy. Hum Mol Genet 14, 27272736.
  • 118
    Ganesh S, Tsurutani N, Suzuki T, Hoshii Y, Ishihara T, gado-Escueta AV & Yamakawa K (2004) The carbohydrate-binding domain of Lafora disease protein targets Lafora polyglucosan bodies. Biochem Biophys Res Commun 313, 11011109.
  • 119
    Bouju S, Lignon MF, Pietu G, Le Cunff M, Leger JJ, Auffray C & Dechesne CA (1998) Molecular cloning and functional expression of a novel human gene encoding two 41–43 kDa skeletal muscle internal membrane proteins. Biochem J 335, 549556.
  • 120
    Fordham-Skelton AP, Chilley P, Lumbreras V, Reignoux S, Fenton TR, Dahm CC, Pages M & Gatehouse JA (2002) A novel higher plant protein tyrosine phosphatase interacts with SNF1-related protein kinases via a KIS (kinase interaction sequence) domain. Plant J 29, 705715.
  • 121
    Kerk D, Conley TR, Rodriguez FA, Tran HT, Nimick M, Muench DG & Moorhead GB (2006) A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. Plant J 46, 400413.
  • 122
    Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC & Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in arabidopsis leaves. Plant Physiol 136, 26872699.
  • 123
    Gentry MS, Dowen RH, Worby CA, Mattoo S, Ecker JR & Dixon JE (2007) The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease. J Cell Biol 178, 477488.
  • 124
    Ohdan K, Kuriki T, Takata H, Kaneko H & Okada S (2000) Introduction of raw starch-binding domains into Bacillus subtilisα-amylase by fusion with the starch-binding domain of Bacillus cyclomaltodextrin glucanotransferase. Appl Environ Microbiol 66, 30583064.
  • 125
    Hua YW, Chi MC, Huei-Fen L, Kuo LY, Ku KL & Lin LL (2005) Adsorption–elution purification of chimeric Bacillus stearothermophilus leucine aminopeptidase II with raw-starch-binding activity. World J Microbiol Biotechnol 21, 689694.
  • 126
    Juge N, Nohr J, Le Gal-Coëffet MF, Kramhoft B, Furniss CS, Planchot V, Archer DB, Williamson G & Svensson B (2006) The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochim Biophys Acta 1764, 275284.
  • 127
    Ji Q, Vincken JP, Suurs LCJM & Visser RGF (2003) Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Mol Biol 51, 789801.
  • 128
    Firouzabadi FN, Vincken JP, Ji Q, Suurs LCJM, Buleon A & Visser RGF (2007) Accumulation of multiple-repeat starch-binding domains (SBD2–SBD5) does not reduce amylose content of potato starch granules. Planta 225, 919933.
  • 129
    Howitt CA, Rahman S & Morell MK (2006) Expression of bacterial starch-binding domains in Arabidopsis increases starch granule size. Funct Plant Biol 33, 257266.
  • 130
    Firouzabadi FN, Kok-Jacon GA, Vincken JP, Ji Q, Suurs LCJM & Visser RGF (2007) Fusion proteins comprising the catalytic domain of mutansucrase and a starch-binding domain can alter the morphology of amylose-free potato starch granules during biosynthesis. Transgenic Res 16, 645656.
  • 131
    Kok-Jacon GA, Ji Q, Vincken JP & Visser RGF (2003) Towards a more versatile α-glucan biosynthesis in plants. J Plant Physiol 160, 765777.
  • 132
    Norman BE, Pedersen S, Bisgaard-Frantzen H & Borchert TK (1997) The development of a new heat-stable α-amylase for calcium free starch liquefaction. Starch/Stärke 49, 371379.
  • 133
    Takao S, Sasaki H, Kurosawa K, Tanida M & Kamagata Y (1987) Production of a raw starch saccharifying enzyme by Corticium rolfsii. Agric Biol Chem 50, 19791987.
  • 134
    Iefuji H, Chino M, Kato M & Iimura Y (1996) Raw-starch-digesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem J 318, 989996.
  • 135
    Gawande BN, Goel A, Patkar AY & Nene SN (1999) Purification and properties of a novel raw starch degrading cyclomaltodextrin glucanotransferase from Bacillus firmus. Appl Microbiol Biotechnol 51, 504509.
  • 136
    Nagasaka Y, Kurosawa K, Yokota A & Tomita F (1998) Purification and properties of the raw-starch-digesting glucoamylases from Corticium rolfsii. Appl Microbiol Biotechnol 50, 323330.
  • 137
    Fukuyama S, Matsui T, Soong C, Allain E, Viksø-Nielsen A, Udagawa H, Liu Y, Duan J & Wu W. Novozymes A/S, Denmark and Novozymes North America, Inc., USA. Enzymes for starch processing. Patent WO06069290.
  • 138
    Wang P, Singh V, Xue H, Johnston DB, Rausch KD & Tumbleson ME (2007) Comparison of raw starch hydrolyzing enzyme with conventional liquefaction and saccharification enzymes in dry-grind corn Processing. Cereal Chem 84, 1014.
  • 139
    Klein C, Hollender J, Bender H & Schulz GE (1992) Catalytic center of cyclodextrin glycosyltransferase derived from X-ray structure analysis combined with site-directed mutagenesis. Biochemistry 31, 87408746.
  • 140
    Parsiegla G, Schmidt AK & Schulz GE (1998) Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the γ-cyclodextrin production. Eur J Biochem 255, 710717.
  • 141
    Uitdehaag JC, Kalk KH, van der Veen BA, Dijkhuizen L & Dijkstra BW (1999) The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a γ-cyclodextrin–CGTase complex at 1.8-Å resolution. J Biol Chem 274, 3486834876.
  • 142
    Knegtel RM, Wind RD, Rozeboom HJ, Kalk KH, Buitelaar RM, Dijkhuizen L & Dijkstra BW (1996) Crystal structure at 2.3 Å resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermonanaerobacterium thermosulfurigenes EM1. J Mol Biol 256, 611622.
  • 143
    Wind RD, Uitdehaag JC, Buitelaar RM, Dijkstra BW & Dijkhuizen L (1998) Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J Biol Chem 273, 57715779.
  • 144
    Sigurskjold BW, Svensson B, Williamson G & Driguez H (1994) Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Eur J Biochem 225, 133141.
  • 145
    Ohdan K, Kuriki T, Takata H & Okada S (2000) Cloning of the cyclodextrin glucanotransferase gene from alkalophilic Bacillus sp. A2-5a and analysis of the raw starch-binding domain. Appl Microbiol Biotechnol 53, 430434.
  • 146
    Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357358.