SEARCH

SEARCH BY CITATION

References

  • 1
    Vrielink A, Lloyd LF & Blow DM (1991) Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 Å resolution. J Mol Biol 219, 533554.
  • 2
    Li J, Vrielink A, Brick P & Blow DM (1993) Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases. Biochemistry 32, 1150711515.
  • 3
    Lario PI, Sampson N & Vrielink A (2003) Sub-atomic resolution crystal structure of cholesterol oxidase: What atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. J Mol Biol 326, 16351650.
  • 4
    Berg OG, Gelb MH, Tsai MD & Jain MK (2001) Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem Rev 101, 26132654.
  • 5
    Radhakrishnan A & McConnell HM (2000) Chemical activity of cholesterol in membranes. Biochemistry 39, 81198124.
  • 6
    Silvius J (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta 1610, 174183.
  • 7
    Barenholz Y, Patzer EJ, Moore NF & Wagner RR (1978) Cholesterol oxidase as a probe for studying membrane composition and organization. Adv Exp Med Biol 101, 4556.
  • 8
    Lange Y, Matthies H & Steck TL (1984) Cholesterol oxidase susceptibility of the red cell membrane. Biochim Biophys Acta 769, 551562.
  • 9
    Lange Y (1992) Tracking cell cholesterol with cholesterol oxidase. J Lipid Res 33, 315321.
  • 10
    El Yandouzi EH & Le Grimellec C (1993) Effect of cholesterol oxidase treatment on physical state of renal brush border membranes: Evidence for a cholesterol pool interacting weakly with membrane lipids. Biochemistry 32, 20472052.
  • 11
    Zager RA, Burkhart KM & Johnson A (2000) Sphingomyelinase and membrane sphingomyelin content: determinants of proximal tubule cell susceptibility to injury. J Am Soc Nephrol 11, 894902.
  • 12
    Lange Y, Ye J & Steck TL (2007) Scrambling of phospholipids activates red cell membrane cholesterol. Biochemistry 46, 22332238.
  • 13
    Lange Y & Steck TL (2008) Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog Lipid Res 47, 319332.
  • 14
    Corbin DR, Greenplate JT & Purcell JP (1998) The identification and development of proteins for control of insects in genetically modified crops. Hortscience 33, 614617.
  • 15
    Corbin DR, Grebenok RJ, Ohnmeiss TE, Greenplate JT & Purcell JP (2001) Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol 126, 11161128.
  • 16
    Ipsen JH, Karlström G, Mouritsen OG, Wennerström H & Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905, 162172.
  • 17
    Ipsen JH, Mouritsen OG & Zuckermann MJ (1989) Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys J 56, 661667.
  • 18
    Sankaram MB & Thompson TE (1990) Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry 29, 1067010675.
  • 19
    McConnell HM & Radhakrishnan A (2003) Condensed complexes of cholesterol and phospholipids. Biochim Biophys Acta 1610, 159173.
  • 20
    Huang J, Buboltz JT & Feigenson GW (1999) Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim Biophys Acta 1417, 89100.
  • 21
    Huang J & Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76, 21422157.
  • 22
    Uwajima T, Yagi H & Terada O (1974) Properties of crystalline 3β-hydroxysteroid oxidase of Brevibacterium sterolicum. Agric Biol Chem 38, 11491156.
  • 23
    Kreit J, Lefebvre G & Germain P (1994) Membrane-bound cholesterol oxidase from Rhodococcus sp. cells. Production and extraction. J Biotechnol 33, 271282.
  • 24
    De Martinez SG & Green C (1979) The action of cholesterol oxidase on cholesterol in vesicles and micelles [proceedings]. Biochem Soc Trans 7, 978979.
  • 25
    Peynet J, Delattre J, Canal J, Rousselet F & Girard ML (1979) Effect of the phosphatidylcholine/cholesterol molar ratio of liposomes on the reactivity of cholesterol with cholesterol:oxygen oxydoreductase. Biochimie 61, 487494.
  • 26
    Sampson NS & Kass IJ (1997) Isomerization, but not oxidation, is suppressed by a single point mutation, E361Q, in the reaction catalyzed by cholesterol oxidase. J Am Chem Soc 119, 855862.
  • 27
    Kass IJ & Sampson NS (1998) Evaluation of the role of His447 in the reaction catalyzed by cholesterol oxidase. Biochemistry 37, 1799018000.
  • 28
    Kass IJ & Sampson NS (1998) The importance of Glu361 position in the reaction catalyzed by cholesterol oxidase. Bioorg Med Chem Lett 8, 26632668.
  • 29
    Xiang J & Sampson NS (2004) Library screening studies to investigate substrate specificity in the reaction catalyzed by cholesterol oxidase. Prot Eng Des Sel 17, 341348.
  • 30
    Vrielink A, Li J, Brick P & Blow D (1992) Structure and mechanism of cholesterol oxidase. Spec Publ (R Soc Chem) 111, 8394.
  • 31
    Sampson NS & Vrielink A (2003) Cholesterol oxidases: A study of nature’s approach to protein design. Acc Chem Res 36, 713722.
  • 32
    Sampson NS, Kass IJ & Ghoshroy KB (1998) Assessment of the role of an Ω loop of cholesterol oxidase: a truncated loop mutant has altered substrate specificity. Biochemistry 37, 57705778.
  • 33
    Yue QK, Kass IJ, Sampson NS & Vrielink A (1999) Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants. Biochemistry 38, 42774286.
  • 34
    Chen X, Wolfgang DE & Sampson NS (2000) Use of the parallax-quench method to determine the position of the active-site loop of cholesterol oxidase in lipid bilayers. Biochemistry 39, 1338313389.
  • 35
    Slotte JP (1995) Direct observation of the action of cholesterol oxidase in monolayers. Biochim Biophys Acta 1259, 180186.
  • 36
    Ghoshroy KB, Zhu W & Sampson NS (1997) Investigation of membrane disruption in the reaction catalyzed by cholesterol oxidase. Biochemistry 36, 61336140.
  • 37
    Slotte JP (1992) Cholesterol oxidase susceptibility of cholesterol and 5-androsten-3β-ol in pure sterol monolayers and in mixedmonolayers containing 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine. Biochim Biophys Acta 1124, 2328.
  • 38
    Brooks CJW & Smith AG (1975) Cholesterol oxidase: Further studies of substrate specificity in relation to the analytical characterisation of steroids. J Chromatogr 112, 499511.
  • 39
    Smith AG & Brooks CJW (1977) The substrate specificity and stereochemistry, reversiblility and inhibition of the 3-oxo steroid Δ45 isomerase component of cholesterol oxidase. Biochem J 167, 121129.
  • 40
    Ahn KW & Sampson NS (2004) Cholesterol oxidase senses subtle changes in lipid bilayer structure. Biochemistry 43, 827836.
  • 41
    Grönberg L & Slotte JP (1990) Cholesterol oxidase catalyzed oxidation of cholesterol in mixed lipid monolayers: effects of surface pressure and phospholipid composition on catalytic activity. Biochemistry 29, 31733178.
  • 42
    Sampson NS & Kwak S (2008) Catalysis at the membrane interface: Cholesterol oxidase as a case study. In Proceedings of 3rd International Symposium on Experimental Standard Conditions of Enzyme Characterizations (ESCEC), (Kettner C & Hicks MG eds), pp 1322. Beilstein-Institut, Rüdesheim/Rhein, Germany.
  • 43
    Slotte JP (1992) Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappear. Biochemistry 31, 54725477.
  • 44
    Donova MV (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Microbiol 43, 114.
  • 45
    Owen RW, Mason AN & Bilton RF (1983) The degradation of cholesterol by Pseudomonas sp. NCIB 10590 under aerobic conditions. J Lipid Res 24, 15001511.
  • 46
    Horinouchi M, Kurita T, Yamamoto T, Hatori E, Hayashi T & Kudo T (2004) Steroid degradation gene cluster of Comamonas testosteroni consisting of 18 putative genes from meta-cleavage enzyme gene tesB to regulator gene tesR. Biochem Biophys Res Commun 324, 597604.
  • 47
    Horinouchi S, Ishizuka H & Beppu T (1991) Cloning, nucleotide sequence, and transcriptional analysis of the NAD(P)-dependent cholesterol dehydrogenase gene from a Nocardia sp. and its hyperexpression in Streptomyces spp. Appl Environ Microbiol 57, 13861393.
  • 48
    Kishi K, Watazu Y, Katayama Y & Okabe H (2000) The characteristics and applications of recombinant cholesterol dehydrogenase. Biosci Biotechnol Biochem 64, 13521358.
  • 49
    Chiang YR, Ismail W, Müller M & Fuchs G (2007) Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem 282, 1324013249.
  • 50
    Chiang YR, Ismail W, Heintz D, Schaeffer C, Van Dorsselaer A & Fuchs G (2008) Study of anoxic and oxic cholesterol metabolism by Sterolibacterium denitrificans. J Bacteriol 190, 905914.
  • 51
    Yang X, Dubnau E, Smith I & Sampson NS (2007) Rv1106c from Mycobacterium tuberculosis is a 3β-hydroxysteroid dehydrogenase. Biochemistry 46, 90589067.
  • 52
    Brzostek A, Dziadek B, Rumijowska-Galewicz A, Pawelczyk J & Dziadek J (2007) Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. FEMS Microbiol Lett 275, 106112.
  • 53
    Kreit J & Germain P (1998) Induction and stability of cholesterol oxidase from cells of a Rhodoccus. In Stability and Stabilization of Biocatalysts (Ballesteros A, Plou FJ, Iborra JL & Halling PJ, eds), Vol 15: Progress in Biotechnology, pp. 639644. Elsevier Science, Amsterdam.
  • 54
    Elalami A, Baessler K, Kong F, Sampson N & Kreit J (2009) Subcellular forms of cholesterol oxidase from Rhodococcus sp. CIP 105 335: induction, solubilization and characterization. In Current Research Topics in Applied Microbiology and Microbial Biotechnology (Mendez-Vilas, A ed), pp 729735. World Scientific Publishing Co. Pte. Ltd, London.
  • 55
    Sih CJ, Wang KC & Tai HH (1967) C22 acid intermediates in the microbiological cleavage of the cholesterol side chain. J Am Chem Soc 89, 19561957.
  • 56
    Sih CJ, Tai HH & Tsong YY (1967) The mechanism of microbial conversion of cholesterol into 17-keto steroids. J Am Chem Soc 89, 19571958.
  • 57
    Goodfellow M & Alderson G (1977) The actinomycete-genus Rhodococcus: a home for the “rhodochrous” complex. J Gen Microbiol 100, 99122.
  • 58
    Ladrón N, Fernández M, Agüero J, González Zörn B, Vázquez-Boland JA & Navas J (2003) Rapid identification of Rhodococcus equi by a PCR assay targeting the choE gene. J Clin Microbiol 41, 32413245.
  • 59
    Drzyzga O, Navarro Llorens JM, Fernández de Las Heras L, García Fernández E & Perera J (2009) Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int J Syst Evol Microbiol 59, 10111015.
  • 60
    Arima K, Nagasawa M, Bae M & Tamura G (1969) Microbial transformation of sterols Part I. Decomposition of cholesterol by microorganisms. Agric Biol Chem 33, 16361643.
  • 61
    Marsheck WJ, Kraychy S & Muir RD (1972) Microbial degradation of sterols. Appl Microbiol 23, 7277.
  • 62
    Wovcha MG, Antosz FJ, Knight JC, Kominek LA & Pyke TR (1978) Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum. Biochim Biophys Acta 531, 308321.
  • 63
    Schoemer U & Martin CKA (1980) Microbial transformation of sterols. Biotechnol Bioeng 22, Suppl 1, 1125.
  • 64
    Martin CKA (1984) Sterols. In Biotechnology, a Comprehensive Treatise in Eight Volumes: Biotransformations, Vol 6a (Kieslich K, vol ed), (Rehm HJ & Reed G, eds)pp. 7995. Wiley-VCH Verlag GmbH, Weinheim, Germany.
  • 65
    Lee CY & Liu WH (1992) Production of androsta-1,4-diene-3,17-dione from cholesterol using immobilized growing cells of Mycobacterium sp. NRRL B-3683 adsorbed on solid carriers. Appl Microbiol Biotechnol 36, 598603.
  • 66
    Stadtman TC, Cherkes A & Anfinsen CB (1954) Studies on the microbiological degradation of cholesterol. J Biol Chem 206, 511523.
  • 67
    Stadtman TC (1955) Cholesterol dehydrogenase from a Mycobacterium. Methods Enzymol 1, 678681.
  • 68
    Bell KS, Philp JC, Aw DWJ & Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85, 195210.
  • 69
    Halpern M (1981) Cholesterol oxidase from bacteria. In Industrial Enzymes from Microbial Sources. ( Chem Tech Rev no 186), pp. 322. Noyes Data Corp, NJ, USA.
  • 70
    Rahman MT, Herron LL, Kapur V, Meijer WG, Byrne BA, Ren J, Nicholson VM & Prescott JF (2003) Partial genome sequencing of Rhodococcus equi ATCC 33701. Vet Microbiol 94, 143158.
  • 71
    Navas J, Gonález-Zorn B, Ladrón N, Garrido P & Vázquez-Boland JA (2001) Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J Bacteriol 183, 47964805.
  • 72
    Linder R & Bernheimer AW (1982) Enzymatic oxidation of membrane cholesterol in relation to lysis of sheep erythrocytes by corynebacterial enzymes. Arch Biochem Biophys 213, 395404.
  • 73
    Fernández-Garayzábal JF, Delgado C, Blanco MM & Domínguez L (1996) Cholesterol oxidase from Rhodococcus equi is likely the major factor involved in the cooperative lytic process (CAMP reaction) with Listeria monocytogenes. Lett Appl Microbiol 22, 249252.
  • 74
    Machang’u RS & Prescott JF (1991) Purification and properties of cholesterol oxidase and choline phosphohydrolase from Rhodococcus equi. Can J Vet Res 55, 332340.
  • 75
    Megha & London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279, 999710004.
  • 76
    Weinstock DM & Brown AE (2002) Rhodococcus equi: an emerging pathogen. Clin Infect Dis 34, 13791385.
  • 77
    Fuhrmann H, Dobeleit G, Bellair S & Gück T (2002) Cholesterol oxidase and resistance of Rhodococcus equi to peroxidative stress in vitro in the presence of cholesterol. J Vet Med B 49, 310311.
  • 78
    Linder R & Bernheimer AW (1997) Oxidation of macrophage membrane cholesterol by intracellular Rhodococcus equi. Vet Microbiol 56, 269276.
  • 79
    Pei Y, Dupont C, Sydor T, Haas A & Prescott JF (2006) Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi. Vet Microbiol 118, 240246.
  • 80
    Pei Y, Nicholson V, Woods K & Prescott JF (2007) Immunization by intrabronchial administration to 1-week-old foals of an unmarked double gene disruption strain of Rhodococcus equi strain 103+. Vet Microbiol 125, 100110.
  • 81
    Mohn WW, van der Geize R, Stewart GR, Okamoto S, Liu J, Dijkhuizen L & Eltis LD (2008) The actinobacterial Mce4 locus encodes a steroid transporter. J Biol Chem 283, 3536835374.
  • 82
    van der Geize R, de Jong W, Hessels GI, Grommen AWF, Jacobs AAC & Dijkhuizen L (2008) A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic Acids Res 36, e151.
  • 83
    Atrat PG, Wagner B, Wagner M & Schumann G (1992) Localization of the cholesterol oxidase in Rhodococcus erythropolis IMET 7185 studied by immunoelectron microscopy. J Steroid Biochem Mol Biol 42, 193200.
  • 84
    Sojo M, Bru R, LopezMolina D, GarciaCarmona F & Argüelles JC (1997) Cell-linked and extracellular cholesterol oxidase activities from Rhodococcus erythropolis. Isolation and physiological characterization. Appl Microbiol Biotechnol 47, 583589.
  • 85
    Kreit J, Germain P & Lefebvre G (1992) Extracellular cholesterol oxidase from Rhodococcus sp. cells. J Biotechnol 24, 177188.
  • 86
    Pandey AK & Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105, 43764380.
  • 87
    Yam KC, D’Angelo I, Kalscheuer R, Zhu H, Wang JX, Snieckus V, Ly LH, Converse PJ, Jacobs WRJ, Strynadka N et al. (2009) Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5, e1000344.
  • 88
    Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW et al. (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104, 19471952.
  • 89
    Capyk JK, D’Angelo I, Strynadka NC & Eltis LD (2009) Characterization of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J Biol Chem 284, 99379946.
  • 90
    Aparicio JF, Fouces R, Mendes MV, Olivera N & Martín JF (2000) A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. Chem Biol 7, 895905.
  • 91
    Aparicio JF, Mendes MV, Antón N, Recio E & Martín JF (2004) Polyene macrolide antibiotic biosynthesis. Curr Med Chem 11, 16451656.
  • 92
    Antón N, Mendes MV, Martín JF & Aparicio JF (2004) Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186, 25672575.
  • 93
    Mendes MV, Recio E, Antón N, Guerra SM, Santos-Aberturas J, Martín JF & Aparicio JF (2007) Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Chem Biol 14, 279290.
  • 94
    Nesbitt NM & Sampson NS (2007) Antifungal tradecraft by cholesterol oxidase. Chem Biol 14, 238241.
  • 95
    Aparicio JF & Martín JF (2008) Microbial cholesterol oxidases: bioconversion enzymes or signal proteins? Mol Biosyst 4, 804809.
  • 96
    Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T et al. (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98, 1221512220.
  • 97
    Seco EM, Pérez-Zúñiga FJ, Rolón MS & Malpartida F (2004) Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces diastaticus var. 108. Chem Biol 11, 357366.
  • 98
    Kamei T, Takiguchi Y, Suzuki H, Matsuzaki M & Nakamura S (1978) Purification of 3β-hydroxysteroid oxidase of Streptomyces violascens origin by affinity chromatography on cholesterol. Chem Pharm Bull (Tokyo) 26, 27992804.
  • 99
    Martín JF & Aparicio JF (2009) Enzymology of the polyenes pimaricin and candicidin biosynthesis. Methods Enzymol 459, 215242.
  • 100
    van der Geize R, Hessels GI, van Gerwen R, van der Meijden P & Dijkhuizen L (2002) Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 45, 10071018.
  • 101
    Horinouchi M, Hayashi T, Koshino H, Kurita T & Kudo T (2005) Identification of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, 4-hydroxy-2-oxohexanoic acid, and 2-hydroxyhexa-2,4-dienoic acid and related enzymes involved in testosterone degradation in Comamonas testosteroni TA441. Appl Environ Microbiol 71, 52755281.
  • 102
    Andor A, Jekkel A, Hopwood DA, Jeanplong F, Ilköy E, Kónya A, Kurucz I & Ambrus G (2006) Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9α-hydroxylase in Mycobacterium smegmatis mc(2)155. Appl Environ Microbiol 72, 65546559.
  • 103
    DeLano WL (2006) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA. http://www.pymol.org .
  • 104
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.
  • 105
    Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406425.