SEARCH

SEARCH BY CITATION

References

  • 1
    Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW & Yokoyama S (2003) An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12, 541552.
  • 2
    Citri A & Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7, 505516.
  • 3
    Mendelsohn J & Baselga J (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21, 27872799.
  • 4
    Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W & Varmus HE (2006) Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 20, 14961510.
  • 5
    Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K, Mahmood U, Mitchell A, Sun Y, Al-Hashem R et al. (2006) The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9, 485495.
  • 6
    Herbst RS & Bunn PA Jr (2003) Targeting the epidermal growth factor receptor in non-small cell lung cancer. Clin Cancer Res 9, 58135824.
  • 7
    Nakagawa K, Tamura T, Negoro S, Kudoh S, Yamamoto N, Yamamoto N, Takeda K, Swaisland H, Nakatani I, Hirose M et al. (2003) Phase I pharmacokinetic trial of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (‘Iressa’, ZD1839) in Japanese patients with solid malignant tumors. Ann Oncol 14, 922930.
  • 8
    Gazdar AF, Shigematsu H, Herz J & Minna JD (2004) Mutations and addiction to EGFR: the Achilles ‘heal’ of lung cancers? Trends Mol Med 10, 481486.
  • 9
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350, 21292139.
  • 10
    Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ et al. (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 14971500.
  • 11
    Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L et al. (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101, 1330613311.
  • 12
    Janmaat ML, Kruyt FA, Rodriguez JA & Giaccone G (2003) Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways. Clin Cancer Res 9, 23162326.
  • 13
    del Peso L, Gonzalez-Garcia M, Page C, Herrera R & Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687689.
  • 14
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J & Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857868.
  • 15
    Marte BM & Downward J (1997) PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 22, 355358.
  • 16
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S & Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 13181321.
  • 17
    Takeuchi K & Ito F (2004) Suppression of adriamycin-induced apoptosis by sustained activation of the phosphatidylinositol-3′-OH kinase-Akt pathway. J Biol Chem 279, 892900.
  • 18
    Engelman JA, Jänne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C, Cichowski K, Johnson BE & Cantley LC (2005) ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci USA 102, 37883793.
  • 19
    Ono M, Hirata A, Kometani T, Miyagawa M, Ueda S, Kinoshita H, Fujii T & Kuwano M (2004) Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol Cancer Ther 3, 465472.
  • 20
    Green DR & Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305, 626629.
  • 21
    Chipuk JE, Bouchier-Hayes L & Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13, 13961402.
  • 22
    Strasser A, O’Connor L & Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69, 217245.
  • 23
    Huang DCS & Strasser A (2000) BH3-only proteins – essential initiators of apoptotic cell death. Cell 103, 839842.
  • 24
    Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW, Dikkes P, Korsmeyer SJ & Greenberg ME (2002) Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 3, 631643.
  • 25
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y & Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231241.
  • 26
    Bonni A, Brunet A, West AE, Datta SR, Takasu MA & Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 13581362.
  • 27
    Shimamura A, Ballif BA, Richards SA & Blenis J (2000) Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr Biol 10, 127135.
  • 28
    Gilmore AP, Valentijn AJ, Wang P, Ranger AM, Bundred N, O’Hare MJ, Wakeling A, Korsmeyer SJ & Streuli CH (2002) Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. J Biol Chem 277, 2764327650.
  • 29
    Nakano K & Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683694.
  • 30
    Yu J, Zhang L, Hwang PM, Kinzler KW & Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7, 673682.
  • 31
    Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, MacLean KH, Han J, Chittenden T, Ihle JN et al. (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4, 321328.
  • 32
    Yu J & Zhang L (2003) No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4, 248249.
  • 33
    Sun Q, Ming L, Thomas SM, Wang Y, Chen ZG, Ferris RL, Grandis JR, Zhang L & Yu J (2009) PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene 28, 23482357.
  • 34
    O’Connor L, Strasser A, O’Reilly LA, Hausmann G, Adams JM, Cory S & Huang DC (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17, 384395.
  • 35
    Puthalakath H, Huang DC, O’Reilly LA, King SM & Strasser A (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3, 287296.
  • 36
    Marani M, Tenev T, Hancock D, Downward J & Lemoine NR (2002) Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. Mol Cell Biol 22, 35773589.
  • 37
    Ley R, Balmanno K, Hadfield K, Weston C & Cook SJ (2003) Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 278, 1881118816.
  • 38
    Costa DB, Halmos B, Kumar A, Schumer ST, Huberman MS, Boggon TJ, Tenen DG & Kobayashi S (2007) BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med 4, 16691679.
  • 39
    Cragg MS, Kuroda J, Puthalakath H, Huang DC & Strasser A (2007) Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med 4, 16811689.
  • 40
    Gong Y, Somwar R, Politi K, Balak M, Chmielecki J, Jiang X & Pao W (2007) Induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors in mutant EGFR-dependent lung adenocarcinomas. PLoS Med 4, 16551668.
  • 41
    Xiang J, Chao DT & Korsmeyer SJ (1996) BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci USA 93, 1455914563.
  • 42
    Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Sloetjes AW, de Witte T, Waksman G & Korsmeyer SJ (1998) Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91, 29912997.
  • 43
    Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG & Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139, 12811292.
  • 44
    Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D & Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95, 49975002.
  • 45
    Tsuruta F, Masuyama N & Gotoh Y (2002) The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 277, 1404014047.
  • 46
    Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, Marrack P, Bratton DL & Henson PM (2004) Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem 279, 2108521095.
  • 47
    Ariyama H, Qin B, Baba E, Tanaka R, Mitsugi K, Harada M & Nakano S (2006) Gefitinib, a selective EGFR tyrosine kinase inhibitor, induces apoptosis through activation of Bax in human gallbladder adenocarcinoma cells. J Cell Biochem 97, 724734.
  • 48
    Yanase N, Ohshima K, Ikegami H & Mizuguchi J (2000) Cytochrome c release, mitochondrial membrane depolarization, caspase-3 activation, and Bax-alpha cleavage during IFN-alpha-induced apoptosis in Daudi B lymphoma cells. J Interferon Cytokine Res 20, 11211129.
  • 49
    Wood DE & Newcomb EW (2000) Cleavage of Bax enhances its cell death function. Exp Cell Res 256, 375382.
  • 50
    Gao G & Dou QP (2000) N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 80, 5372.
  • 51
    Toyota H, Yanase N, Yoshimoto T, Moriyama M, Sudo T & Mizuguchi J (2003) Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett 189, 221230.
  • 52
    Peng XH, Cao ZH, Xia JT, Carlson GW, Lewis MM, Wood WC & Yang L (2005) Real-time detection of gene expression in cancer cells using molecular beacon imaging: new strategies for cancer research. Cancer Res 65, 19091917.
  • 53
    Liu Z, Li H, Derouet M, Filmus J, LaCasse EC, Korneluk RG, Kerbel RS & Rosen KV (2005) ras Oncogene triggers up-regulation of cIAP2 and XIAP in intestinal epithelial cells: epidermal growth factor receptor-dependent and -independent mechanisms of ras-induced transformation. J Biol Chem 280, 3738337392.
  • 54
    Takaoka S, Iwase M, Uchida M, Yoshiba S, Kondo G, Watanabe H, Ohashi M, Nagumo M & Shintani S (2007) Effect of combining epidermal growth factor receptor inhibitors and cisplatin on proliferation and apoptosis of oral squamous cell carcinoma cells. Int J Oncol 30, 14691476.
  • 55
    Ciardiello F & Tortora G (2001) A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 7, 29582970.
  • 56
    Busse D, Doughty RS, Ramsey TT, Russell WE, Price JO, Flanagan WM, Shawver LK & Arteaga CL (2000) Reversible G(1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27(KIP1) independent of MAPK activity. J Biol Chem 275, 69876995.
  • 57
    Massague J (2004) G1 cell-cycle control and cancer. Nature 432, 298306.
  • 58
    Di Gennaro E, Barbarino M, Bruzzese F, De Lorenzo S, Caraglia M, Abbruzzese A, Avallone A, Comella P, Caponigro F, Pepe S et al. (2003) Critical role of both p27KIP1 and p21CIP1/WAF1 in the antiproliferative effect of ZD1839 (‘Iressa’), an epidermal growth factor receptor tyrosine kinase inhibitor, in head and neck squamous carcinoma cells. J Cell Physiol 195, 139150.
  • 59
    Koyama M, Matsuzaki Y, Yogosawa S, Hitomi T, Kawanaka M & Sakai T (2007) ZD1839 induces p15INK4b and causes G1 arrest by inhibiting the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Mol Cancer Ther 6, 15791587.
  • 60
    Barnes CJ, Bagheri-Yarmand R, Mandal M, Yang Z, Clayman GL, Hong WK & Kumar R (2003) Suppression of epidermal growth factor receptor, mitogen-activated protein kinase, and Pak1 pathways and invasiveness of human cutaneous squamous cancer cells by the tyrosine kinase inhibitor ZD1839 (Iressa). Mol Cancer Ther 2, 345351.
  • 61
    Adam L, Vadlamudi R, Mandal M, Chernoff J & Kumar R (2000) Regulation of microfilament reorganization and invasiveness of breast cancer cells by p21-activated kinase-1 K299R. J Biol Chem 275, 1204112050.
  • 62
    Sheng G, Guo J & Warner BW (2007) Epidermal growth factor receptor signaling modulates apoptosis via p38alpha MAPK-dependent activation of Bax in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 293, G599G606.
  • 63
    Van Laethem A, Van Kelst S, Lippens S, Declercq W, Vandenabeele P, Janssens S, Vandenheede JR, Garmyn M & Agostinis P (2004) Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB J 18, 19461948.
  • 64
    Keyse SM (1995) An emerging family of dual specificity MAP kinase phosphatases. Biochim Biophys Acta 1265, 152160.
  • 65
    Sun H, Charles CH, Lau LF & Tonks NK (1993) MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75, 487493.
  • 66
    Franklin CC & Kraft AS (1997) Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J Biol Chem 272, 1691716923.
  • 67
    Vicent S, Garayoa M, López-Picazo JM, Lozano MD, Toledo G, Thunnissen FB, Manzano RG & Montuenga LM (2004) Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res 10, 36393649.
  • 68
    Boutros T, Chevet E & Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60, 261310.
  • 69
    Takeuchi K, Shin-ya T, Nishio K & Ito F (2009) Mitogen-activated protein kinase phosphatase-1 modulated JNK activation is critical for apoptosis induced by inhibitor of epidermal growth factor receptor-tyrosine kinase. FEBS J 276, 12551265.
  • 70
    Li J, Gorospe M, Hutter D, Barnes J, Keyse SM & Liu Y (2001) Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation. Mol Cell Biol 21, 82138224.
  • 71
    Fujita T, Ryser S, Tortola S, Piuz I & Schlegel W (2007) Gene-specific recruitment of positive and negative elongation factors during stimulated transcription of the MKP-1 gene in neuroendocrine cells. Nucleic Acids Res 35, 10071017.
  • 72
    Brondello JM, Pouyssegur J & McKenzie FR (1999) Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286, 25142517.
  • 73
    Lin YW & Yang JL (2006) Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem 281, 915926.
  • 74
    Kwak SP, Hakes DJ, Martell KJ & Dixon JE (1994) Isolation and characterization of a human dual specificity protein-tyrosine phosphatase gene. J Biol Chem 269, 35963604.
  • 75
    Xing J, Ginty DD & Greenberg ME (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959963.
  • 76
    Lin YW, Chuang SM & Yang JL (2003) ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway. J Biol Chem 278, 2153421541.
  • 77
    Chang GC, Hsu SL, Tsai JR, Liang FP, Lin SY, Sheu GT & Chen CY (2004) Molecular mechanisms of ZD1839-induced G1-cell cycle arrest and apoptosis in human lung adenocarcinoma A549 cells. Biochem Pharmacol 68, 14531464.
  • 78
    Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG & Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2, 225235.