SEARCH

SEARCH BY CITATION

References

  • 1
    Ferry DR, Russell MA & Cullen MH (1992) P-Glycoprotein possesses a 1,4-dihydropyridine selective drug acceptor site which is allosterically coupled to a vinca alkaloid selective binding site. Biochem Biophys Res Commun 188, 440445.
  • 2
    Lugo MR & Sharom FJ (2005) Interaction of LDS-751 and rhodamine 123 with P-glycoprotein: evidence for simultaneous binding of both drugs. Biochemistry 44, 1402014029.
  • 3
    Martin C, Berridge G, Higgins CF, Mistry P, Charlton P & Callaghan R (2000) Communication between multiple drug binding sites on P-glycoprotein. Mol Pharmacol 58, 624632.
  • 4
    Orlowski S, Mir LM, Belehradek J & Garrigos M (1996) Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone and verapamil are mutually non-exclusive modulators. Biochem J 317, 515522.
  • 5
    Bruggemann EP, Germann UA, Gottesman MM & Pastan I (1989) Two different regions of P-glycoprotein [corrected] are photoaffinity-labeled by azidopine. J Biol Chem 264, 1548315488.
  • 6
    Greenberger LM (1993) Major photoaffinity labeling sites for iodoaryl azidoprazosin in P-glycoprotein are within or immediately C-terminal to transmembrane domains 6 and 12. J Biol Chem 268, 1141711425.
  • 7
    Greenberger LM, Lisanti CJ, Silva JT & Horwitz SB (1991) Domain mapping of the photoaffinity drug binding sites in P-glycoprotein encoded by mouse mdr1b. J Biol Chem 266, 2074420751.
  • 8
    Pleban K, Kopp S, Csaszar E, Peer M, Hrebicek T, Rizzi A, Ecker GF & Chiba P (2005) P-Glycoprotein substrate binding domains are located at the transmembrane domain/transmembrane domain interfaces: a combined photoaffinity labelling-protein homology modeling approach. Mol Pharmacol 67, 365374.
  • 9
    Devine SE, Ling V & Melera PW (1992) Amino acid substitutions in the sixth transmembrane domain of P-glycoprotein alter multidrug resistance. Proc Natl Acad Sci USA 89, 45644568.
  • 10
    Kajiji S, Talbot F, Grizzuti K, Van Dyke-Phillips V, Agresti M, Safa AR & Gros P (1993) Functional analysis of P-glycoprotein mutants identifies predicted transmembrane domain 11 as a putative drug binding site. Biochemistry 32, 41854194.
  • 11
    Loo TW & Clarke DM (1993) Functional consequences of phenylalanine mutations in the predicted transmembrane domain of P-glycoprotein. J Biol Chem 268, 1996519972.
  • 12
    Ma JF, Grant G & Melera PW (1997) Mutations in the sixth transmembrane domain of P-glycoprotein that alter the pattern of cross-resistance also alter sensitivity to cyclosporin A reversal. Mol Pharmacol 51, 922930.
  • 13
    Loo TW & Clarke DM (2001) Determining the dimensions of the drug-binding domain of human P-glycoprotein using thiol cross-linking compounds as molecular rulers. J Biol Chem 276, 3687736880.
  • 14
    Loo TW & Clarke DM (2001) Defining the drug-binding site in the human multidrug resistance P-glycoycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. J Biol Chem 276, 1497214979.
  • 15
    Rothnie A, Storm J, Campbell J, Linton KJ, Kerr ID & Callaghan R (2004) The topography of transmembrane segment six is altered during the catalytic cycle of P-glycoprotein. J Biol Chem 279, 3491334921.
  • 16
    Storm J, O’Mara ML, Crowley EH, Peall J, Tieleman DP, Kerr ID & Callaghan R (2007) Residue G346 in transmembrane segment six is involved in inter-domain communication in P-glycoprotein. Biochemistry 46, 98999910.
  • 17
    Dawson RJ & Locher KP (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP–PNP. FEBS Lett 581, 935938.
  • 18
    Ward A, Reyes CL, Yu J, Roth CB & Chang G (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104, 1900519010.
  • 19
    Khare D, Oldham ML, Orelle C, Davidson AL & Chen J (2009) Alternating access in maltose transporter mediated by rigid-body rotations. Mol Cell 33, 528536.
  • 20
    Lee J-Y, Urbatsch IL, Senior AE & Wilkens S (2002) Projection structure of P-glycoprotein by electron microscopy. Evidence for a closed conformation of the nucleotide binding domains. J Biol Chem 277, 4012540131.
  • 21
    Lee J-Y, Urbatsch IL, Senior AE & Wilkens S (2008) Nucleotide-induced structural changes in P-glycoprotein observed by electron microscopy. J Biol Chem 283, 57695779.
  • 22
    Rosenberg MF, Callaghan R, Ford RC & Higgins CF (1997) Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J Biol Chem 272, 1068510694.
  • 23
    Rosenberg MF, Kamis AB, Callaghan R, Higgins CF & Ford RC (2003) Three-dimensional structures of the mammalian multidrug resistance P-glycoycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem 278, 82948299.
  • 24
    Rosenberg MF, Velarde G, Ford RC, Martin C, Berridge G, Kerr ID, Callaghan R, Schmidlin A, Wooding C, Linton KJ et al. (2001) Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle. EMBO J 20, 56155625.
  • 25
    Loo TW & Clarke DM (2005) Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol 206, 173185.
  • 26
    Loo TW, Bartlett MC & Clarke DM (2004) Disulfide cross-linking analysis shows that transmembrane segments 5 and 8 of human P-glycoprotein are close together on the cytoplasmic side of the membrane. J Biol Chem 279, 76927697.
  • 27
    Loo TW & Clarke DM (2000) Identification of residues within the drug binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane. J Biol Chem 275, 3927239278.
  • 28
    Loo TW, Bartlett MC & Clarke DM (2003) Methanethiosulfonate derivatives of rhodamine and verapamil activate human P-glycoprotein at different sites. J Biol Chem 278, 5013650141.
  • 29
    Crowley E, O’Mara ML, Reynolds C, Tieleman DP, Storm J, Kerr ID & Callaghan R (2009) Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1. Biochemistry 48, 62496258.
  • 30
    Storm J, Modok S, O’Mara ML, Tieleman DP, Kerr ID & Callaghan R (2008) Cytosolic region of TM6 in P-glycoprotein: topographical analysis and functional perturbation by site directed labeling. Biochemistry 47, 36153624.
  • 31
    Locher KP, Lee AT & Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 10911098.
  • 32
    Oldham ML, Khare D, Quiocho FA, Davidson AL & Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515521.
  • 33
    Becker JP, Depret G, Van Bambeke F, Tulkens PM & Prevost M (2009) Molecular models of human P-glycoprotein in two different catalytic states. BMC Struct Biol 9, 3, doi:10.1186/1472-6807-9-3.
  • 34
    O’Mara ML & Tieleman DP (2007) P-Glycoprotein models of the apo and ATP-bound states based on homology with Sav1866 and MalK. FEBS Lett 581, 42174222.
  • 35
    Ravna AW, Sylte I & Sager G (2007) Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5). Theor Biol Med Model 4, 33, doi:10.1186/1742-4682-4-33.
  • 36
    Vandevuer S, Van Bambeke F, Tulkens PM & Prevost M (2006) Predicting the three-dimensional structure of human P-glycoprotein in absence of ATP by computational techniques embodying crosslinking data: insight into the mechanism of ligand migration and binding sites. Proteins Struct Funct Bioinform 63, 466478.
  • 37
    Al-Shawi MK & Senior AE (1993) Characterization of the adenosine triphosphatase activity of Chinese hamster P-glycoprotein. J Biol Chem 268, 41974206.
  • 38
    Martin C, Berridge G, Mistry P, Higgins C, Charlton P & Callaghan R (1999) The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol 128, 403411.
  • 39
    Sharom FJ (1995) Characterization and functional reconstitution of the multidrug transporter. J Bioenerg Biomembr 27, 1522.
  • 40
    Safa AR, Stern RK, Choi K, Agresti M, Tamai I, Mehta ND & Roninson IB (1990) Molecular basis of preferential resistance to colchicine in multidrug resistant human cells conferred by Gly185-Val185 substitution in P-glycoprotein. Proc Natl Acad Sci USA 87, 72257229.
  • 41
    Glossmann H, Ferry DR, Striessnig J, Goll A & Moosburger K (1987) Resolving the structure of the Ca2+ channel by photoaffinity labeling. Trends Pharmacol Sci 8, 95100.
  • 42
    Carrier I, Julien M & Gros P (2003) Analysis of catalytic carboxylate mutants E552Q and E1197Q suggests asymmetric ATP hydrolysis by the two nucleotide-binding domains of P-glycoprotein. Biochemistry 42, 1287512885.
  • 43
    Urbatsch IL, Sankaran B, Weber J & Senior AE (1995) P-Glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J Biol Chem 270, 1938319390.
  • 44
    Urbatsch IL, Tyndall GA, Tombline G & Senior AE (2003) P-Glycoprotein catalytic mechanism: studies of the ADP-vanadate inhibited state. J Biol Chem 278, 2317123179.
  • 45
    Callaghan R, Ford RC & Kerr ID (2006) The translocation mechanism of P-glycoprotein. FEBS Lett 580, 10561063.
  • 46
    Higgins CF & Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11, 918926.
  • 47
    Maki N, Moitra K, Ghosh P & Dey S (2006) Allosteric modulation bypasses the requirement for ATP hydrolysis in regenerating low affinity transition state conformation of human P-glycoprotein. J Biol Chem 281, 1076910777.
  • 48
    Martin C, Higgins CF & Callaghan R (2001) The vinblastine binding site adopts high- and low-affinity conformations during a transport cycle of P-glycoprotein. Biochemistry 40, 1573315742.
  • 49
    Sauna ZE, Nandigama K & Ambudkar SV (2006) Exploiting reaction intermediates of the ATPase reaction to elucidate the mechanism of transport by P-glycoprotein (ABCB1). J Biol Chem 281, 2650126511.
  • 50
    Abele R & Tampe R (2004) The ABCs of immunology: structure and function of TAP, the transporter associated with antigen processing. Physiology (Bethesda) 19, 216224.
  • 51
    Aanismaa P, Gatlik-Landwojtowicz E & Seelig A (2008) P-Glycoprotein senses its substrates and the lateral membrane packing density: consequences for the catalytic cycle. Biochemistry 47, 1019710207.
  • 52
    Greenberger LM, Yang C-PH, Gindin E & Horwitz SB (1990) Photoaffinity probes for the a1-adrenergic receptor and the calcium channel bind to a common domain in P-glycoprotein. J Biol Chem 265, 43944401.
  • 53
    Pawagi AB, Wang J, Silverman M, Reithmeier RA & Deber CM (1994) Transmembrane aromatic amino acid distribution in P-glycoprotein. A functional role in broad substrate specificity. J Mol Biol 235, 554564.
  • 54
    Zhang X, Collins KI & Greenberger LM (1995) Functional evidence that transmembrane 12 and the loop between transmembrane 11 and 12 form part of the drug-binding domain in P-glycoycoprotein encoded by MDR1. J Biol Chem 270, 54415448.
  • 55
    Dey S, Ramachandra M, Pastan I, Gottesman MM & Ambudkar SV (1997) Evidence for two nonidentical drug-interaction sites in the human P-glycoycoprotein. Proc Natl Acad Sci USA 94, 1059410599.
  • 56
    Seelig A (1998) A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 251, 252261.
  • 57
    Hafkemeyer P, Dey S, Ambudkar SV, Hrycyna CA, Pastan I & Gottesman MM (1998) Contribution to substrate specificity and transport of nonconserved residues in transmembrane domain 12 of human P-glycoprotein. Biochemistry 37, 1640016409.
  • 58
    Isenberg B, Thole H, Tummler B & Demmer A (2001) Identification and localization of three photobinding sites of iodoarylazidoprazosin in hamster P-glycoprotein. Eur J Biochem 268, 26292634.
  • 59
    Song J & Melera PW (2001) Transmembrane domain (TM) 9 represents a novel site in P-glycoprotein that affects drug resistance and cooperates with TM6 to mediate [125I]iodoarylazidoprazosin labeling. Mol Pharmacol 60, 254261.
  • 60
    Lugo MR & Sharom FJ (2005) Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site. Biochemistry 44, 643655.
  • 61
    Loo TW & Clarke DM (2005) Do drug substrates enter the common drug-binding pocket of P-glycoprotein through ‘gates’? Biochem Biophys Res Commun 329, 419422.
  • 62
    Loo TW, Bartlett MC & Clarke DM (2006) Transmembrane segment 7 of human P-glycoprotein forms part of the drug-binding pocket. Biochem J 399, 351359.
  • 63
    Loo TW, Bartlett MC & Clarke DM (2006) Transmembrane segment 1 of human P-glycoprotein contributes to the drug-binding pocket. Biochem J 396, 537545.
  • 64
    Omote H & Al-Shawi MK (2006) Interaction of transported drugs with the lipid bilayer and P-glycoprotein through a solvation exchange mechanism. Biophys J 90, 40464059.