• 1
    Palmfeldt J, Paese M, Hahn-Hägerdal B & Van Niel EWJ (2004) The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis. Appl Environ Microbiol 70, 54775484.
  • 2
    Thomas TD, Ellwood DC & Longyear VM (1979) Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138, 109117.
  • 3
    Takahashi N, Abbe K, Takahashi-Abbe S & Yamada T (1987) Oxygen sensitivity of sugar metabolism and interconversion of pyruvate formate-lyase in intact cells of Streptococcus mutans and Streptococcus sanguis. Infect Immun 55, 652656.
  • 4
    Crow VL & Pritchard GG (1977) Fructose 1,6-diphosphate-activated l-lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation. J Bacteriol 131, 8291.
  • 5
    Thomas TD, Turner KW & Crow VL (1980) Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation. J Bacteriol 144, 672682.
  • 6
    Lohmeier-Vogel EM, Hahn-Hägerdal B & Vogel HJ (1995) Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in Candida tropicalis cell suspensions. Appl Environ Microbiol 61, 14141419.
  • 7
    Levander F, Andersson U & Rådström P (2001) Physiological role of β-phosphoglucomutase in Lactococcus lactis. Appl Environ Microbiol 67, 45464553.
  • 8
    Martinez-Irujo JJ, Villahermosa ML, Mercapide J, Cabodevilla JF & Santiago E (1998) Analysis of the combined effect of two linear inhibitors on a single enzyme. Biochem J 329, 689698.
  • 9
    Cocaign-Bousquet M, Garrigues C, Loubiere P & Lindley ND (1996) Physiology of pyruvate metabolism in Lactococcus lactis. Antonie Van Leeuwenhoek 70, 253267.
  • 10
    Neves AR, Ventura R, Mansour N, Shearman C, Gasson MJ, Maycock C, Ramos A & Santos H (2002) Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. J Biol Chem 277, 2808828098.
  • 11
    Garrigues C, Loubiere P, Lindley ND & Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179, 52825287.
  • 12
    Wouters JA, Kamphuis HH, Hugenholtz J, Kuipers OP, de Vos WM & Abee T (2000) Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Appl Environ Microbiol 66, 36863691.
  • 13
    Wang CS & Alaupovic P (1980) Glyceraldehyde-3-phosphate dehydrogenase from human erythrocyte membranes. Kinetic mechanism and competitive substrate inhibition by glyceraldehyde 3-phosphate. Arch Biochem Biophys 205, 136145.
  • 14
    Wittenberger CL (1968) Kinetic studies on the inhibition of a D(-)-specific lactate dehydrogenase by adenosine triphosphate. J Biol Chem 243, 30673075.
  • 15
    Brunner NA, Brinkmann H, Siebers B & Hensel R (1998) NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties. J Biol Chem 273, 61496156.
  • 16
    Avigad G (1966) Inhibition of glucose 6-phosphate dehydrogenase by adenosine 5′-triphosphate. Proc Natl Acad Sci USA 56, 15431547.
  • 17
    Nakamura M, Fujiwara A, Yasumasu I, Okinaga S & Arai K (1982) Regulation of glucose metabolism by adenine nucleotides in round spermatids from rat testes. J Biol Chem 257, 1394513950.
  • 18
    Oguchi M, Meriwether BP & Park JH (1973) Interaction between adenosine triphosphate and glyceraldehyde 3-phosphate dehydrogenase 3. Mechanism of action and metabolic control of the enzyme under simulated in vivo conditions. J Biol Chem 248, 55625570.
  • 19
    Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV et al. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267, 53135329.
  • 20
    Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD & Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11, 731753.
  • 21
    Bongers RS, Hoefnagel MHN, Starrenburg MJC, Siemerink MAJ, Arends JGA, Hugenholtz J & Kleerebezem M (2003) IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. J Bacteriol 185, 44994507.
  • 22
    Willemoës M, Kilstrup M, Roepstorff P & Hammer K (2002) Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase. Proteomics 2, 10401046.
  • 23
    Arnau J, Jørgensen F, Madsen SM, Vrang A & Israelsen H (1998) Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli. J Bacteriol 180, 30493055.
  • 24
    Leskovac V (2004) Comprehensive Enzyme Kinetics. Kluwer, New York, p. 106.
  • 25
    Yonetani T & Theorell H (1964) Studies on liver alcohol hydrogenase complexes. 3. Multiple inhibition kinetics in the presence of two competitive inhibitors. Arch Biochem Biophys 106, 243251.
  • 26
    Ryzewski CN & Pietruszko R (1977) Horse liver alcohol dehydrogenase SS: purification and characterization of the homogenous isozyme. Arch Biochem Biophys 183, 7382.
  • 27
    Hanekom AJ, Hofmeyr JH, Snoep JL & Rohwer JM (2006) Experimental evidence for allosteric modifier saturation as predicted by the bi-substrate Hill equation. Syst Biol (Stevenage) 153, 342345.
  • 28
    Fell DA & Wagner A (2000) The small world of metabolism. Nat Biotechnol 18, 11211122.
  • 29
    Albe KR, Butler MH & Wright BE (1990) Cellular concentrations of enzymes and their substrates. J Theor Biol 143, 163195.
  • 30
    Pahlman IL, Gustafsson L, Rigoulet M & Larsson C (2001) Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Yeast 18, 611620.
  • 31
    Meyer CL & Papoutsakis ET (1989) Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 30, 450459.
  • 32
    Papagianni M, Avramidis N & Filiousis G (2007) Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture. Microb Cell Fact 6, 16.
  • 33
    Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD & Fischer W (1985) Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol 6, 183195.
  • 34
    Poolman B, Bosman B, Kiers J & Konings WN (1987) Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis. J Bacteriol 169, 58875890.
  • 35
    Even S, Garrigues C, Loubiere P, Lindley ND & Cocaign-Bousquet M (1999) Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity. Metab Eng 1, 198205.