• 1
    Huang YS, Yang ZC, Yan BG, Yang JM, Chen FM, Crowther RS & Li A (1999) Pathogenesis of early cardiac myocyte damage after severe burns. J Trauma 46, 428432.
  • 2
    Huang Y, Li Z & Yang Z (2003) Roles of ischemia and hypoxia and the molecular pathogenesis of post-burn cardiac shock. Burns 29, 828833.
  • 3
    Baines CP (2009) The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 104, 181188.
  • 4
    Halestrap AP, Clarke SJ & Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion – a target for cardioprotection. Cardiovasc Res 61, 372385.
  • 5
    Kim JS, He L, Qian T & Lemasters JJ (2003) Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med 3, 527535.
  • 6
    Matsumoto S, Friberg H, Ferrand-Drake M & Wieloch T (1999) Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 19, 736741.
  • 7
    Fei X, Yue-Sheng H, Dong-Xia Z, Zhi-Gang C, Jia-Ping Z & Qiong Z (2009) Adenosine A1 receptor activation reduces mitochondrial permeability transition pores opening in hypoxic cardiomyocytes. Clin Exp Pharmacol Physiol 37, 343349.
  • 8
    Leung AW & Halestrap AP (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta 1777, 946952.
  • 9
    Weiss JN, Korge P, Honda HM & Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93, 292301.
  • 10
    Chen CF, Chen Y, Dai K, Chen PL, Riley DJ & Lee WH (1996) A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol Cell Biol 16, 46914699.
  • 11
    Wu WC, Kao YH, Hu PS & Chen JH (2007) Geldanamycin, a HSP90 inhibitor, attenuates the hypoxia-induced vascular endothelial growth factor expression in retinal pigment epithelium cells in vitro. Exp Eye Res 85, 721731.
  • 12
    Kaul SC, Deocaris CC & Wadhwa R (2007) Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42, 263274.
  • 13
    Lau AT, He QY & Chiu JF (2004) A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochem J 382, 641650.
  • 14
    Masuda Y, Shima G, Aiuchi T, Horie M, Hori K, Nakajo S, Kajimoto S, Shibayama-Imazu T & Nakaya K (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279, 4250342515.
  • 15
    Hua G, Zhang Q & Fan Z (2007) Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J Biol Chem 282, 2055320560.
  • 16
    Voloboueva LA, Duan M, Ouyang Y, Emery JF, Stoy C & Giffard RG (2008) Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab 28, 10091016.
  • 17
    Song HY, Dunbar JD, Zhang YX, Guo D & Donner DB (1995) Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 270, 35743581.
  • 18
    Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB & Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275, 33053312.
  • 19
    Chen B, Piel WH, Gui L, Bruford E & Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86, 627637.
  • 20
    Carette J, Lehnert S & Chow TY (2002) Implication of PBP74/mortalin/GRP75 in the radio-adaptive response. Int J Radiat Biol 78, 183190.
  • 21
    Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26, 504510.
  • 22
    Im CN, Lee JS, Zheng Y & Seo JS (2007) Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J Cell Biochem 100, 474486.
  • 23
    Kyriakides ZS, Kremastinos DT, Michelakakis NA, Matsakas EP, Demovelis T & Toutouzas PK (1991) Coronary collateral circulation in coronary artery disease and systemic hypertension. Am J Cardiol 67, 687690.
  • 24
    Horwitz LD, Fennessey PV, Shikes RH & Kong Y (1994) Marked reduction in myocardial infarct size due to prolonged infusion of an antioxidant during reperfusion. Circulation 89, 17921801.
  • 25
    Pridgeon JW, Olzmann JA, Chin LS & Li L (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5, e172.
  • 26
    Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46, 821831.
  • 27
    Halestrap AP & Davidson AM (1990) Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268, 153160.
  • 28
    Connern CP & Halestrap AP (1992) Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J 284, 381385.
  • 29
    Zhong Z, Ramshesh VK, Rehman H, Currin RT, Sridharan V, Theruvath TP, Kim I, Wright GL & Lemasters JJ (2008) Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 295, G823G832.
  • 30
    Shanmuganathan S, Hausenloy DJ, Duchen MR & Yellon DM (2005) Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Physiol Heart Circ Physiol 289, H237H242.
  • 31
    Hausenloy DJ, Ong SB & Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104, 189202.
  • 32
    Sugrue MM, Wang Y, Rideout HJ, Chalmers-Redman RM & Tatton WG (1999) Reduced mitochondrial membrane potential and altered responsiveness of a mitochondrial membrane megachannel in p53-induced senescence. Biochem Biophys Res Commun 261, 123130.
  • 33
    Saotome M, Katoh H, Satoh H, Nagasaka S, Yoshihara S, Terada H & Hayashi H (2005) Mitochondrial membrane potential modulates regulation of mitochondrial Ca2+ in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 288, H1820H1828.
  • 34
    Lee CS, Park SY, Ko HH, Song JH, Shin YK & Han ES (2005) Inhibition of MPP+-induced mitochondrial damage and cell death by trifluoperazine and W-7 in PC12 cells. Neurochem Int 46, 169178.
  • 35
    Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ & Altieri DC (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131, 257270.
  • 36
    Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S & Sollott SJ (2009) Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res 83, 213225.
  • 37
    Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ & Gerasimenko OV (2009) Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284, 2079620803.
  • 38
    Xu L, Voloboueva LA, Ouyang Y, Emery JF & Giffard RG (2009) Overexpression of mitochondrial Hsp70/Hsp75 in rat brain protects mitochondria, reduces oxidative stress, and protects from focal ischemia. J Cereb Blood Flow Metab 29, 365374.
  • 39
    Simpson P & Savion S (1982) Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ Res 50, 101116.